Assessment of the Condition of the Insulating System of Power Equipment by the Method of Recording Polarization Currents
DOI:
https://doi.org/10.24160/1993-6982-2025-4-11-21Keywords:
condition diagnostic methods, power equipment, predicted service life, DAC spectrum, humidity level, diagnostic reliabilityAbstract
Increased attention to the development and studying of modern methods for diagnosing power equipment is still relevant and follows from The development and implementation of effective methods for diagnosing the technical condition of equipment is an important aspect in various industries where highly loaded power plants equipped with oil-filled transformers, cables, and other units are used. In the operating conditions of such devices, timely detection of defects that may lead to breakdowns and emergency situations is particularly crucial, as these can result in significant economic costs and safety risks. Non-destructive testing (NDT) is one of the most important approaches for diagnosing the condition of such objects, allowing assessment without disassembly, thereby preserving their integrity and operational characteristics.
One of the promising NDT methods is the use of dielectric absorption current (DAC) measurement techniques, also known as polarization current recording (PCR) methods, which provide information about the condition of an object, including the presence of defects such as contamination, oil leakage, degradation of insulating materials, and others. Polarization/depolarization currents represent a physical process that occurs due to the interaction of an electric field with a dielectric medium in power installations. This method allows monitoring changes in insulating materials, which can serve as an indicator of their aging, as well as the type and nature of developing defects.
The article presents the results of a study on the condition of the insulation system of three transformers with paper-oil insulation, obtained using an experimental prototype of the "DielectricAnalyzer" device based on the polarization current recording method, as well as a comparison with the results obtained using IDAX and Mit 525 (Megger) devices.
The interpretation of the data obtained using the polarization current recording method demonstrates not only the correctness of determining the main diagnostic parameters (correlation with other methods) but also highlights the method's sensitivity to the type of developing defect. This allows for the formation of a parameter characterizing the state of the insulation system and a more accurate determination of the predicted service life of the object under study.
References
2. U.S. Department of Energy (DOE) 2019 Sustainability Rep. and Implementation Plan [Электрон. ресурс] https://www.energy.gov/sites/prod/files/2019/11/f68/doe-2019-sustainability-plan.pdf (дата обращения 13.01.2025).
3. ОАО «Системный оператор единой энергетической системы». Годовой отчет за 2020 г. [Электрон. ресурс] https://www.so-ups.ru/fileadmin/files/company/reports/annual/2020/annual_2020.pdf (дата обращения 13.01.2025).
4. Группа Россети. Годовой отчет за 2021 г. [Электрон. ресурс] https://www.rosseti.ru/shareholders-and-investors/disclosure-of-information/annual-reports/ (дата обращения 13.01.2025).
5. Министерство энергетики Российской Федерации. Обзор состояния энергетической системы России в 2020 г. [Электрон. ресурс] http://minenergo.gov.ru/ (дата обращения 13.01.2025).
6. CIGRE Working Group 12.18. Guidelines for Life Management Techniques for Power Transformers: Draft Final Report Rev. 2.
7. Dixit A. e. a. Investigation of Cellulose Insulation Ageing in Transformers Retrofilled with Ester Fluids at Different Service Years // IEEE Trans. Dielectrics and Electrical Insulation. 2024. V. 31(4). Pp. 2151—2160.
8. Fofana I., Hadjadi Y. Electrical-based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers // Energies. 2016. V. 9. P. 679
9. Schleif F.R. Corrections for Dielectric Absorption in High Voltage D-C Insulation Tests // AIEE Trans. 1956. V. 75. P. 111.
10. Nemeth E. Measuring Voltage Response a Nondestructive Diagnostic Test Method of HV Insulation // IEEE Proc. Sci. Measurement and Technol. 1999. V. 146(5). Pp. 249—252.
11. Алексеев Б.А. Контроль влажности изоляции силовых трансформаторов. Использование поляризационных явлений // Электрические станции. 2004. № 2. С. 57—63.
12. Jian Hao, Chen G. Quantitative Analysis Ageing Status of Natural Ester-paper Insulation and Mineral Oil-paper Insulation by Polarization // IEEE Trans. Dielectrics and Electrical Insulation. 2012. V. 19(1). Pр. 188—199.
13. Чернышев В.А., Зинченко К.А., Образцов С.А. Диагностика состояния изоляционной системы энергетического оборудования с помощью контроля плотности тока диэлектрической абсорбции // Методы и средства оценки состояния энергетического оборудования // Актуальные вопросы диагностирования, эксплуатации и ремонта электротехнического оборудования. 2022. № 51. С. 18—28.
14. Чернышев В.А. и др. Спектры токов диэлектрической абсорбции и их диагностические возможности. Диагностика состояния изоляционной системы энергетического оборудования // Вестник МЭИ. 2025. № 3. С. 11—23.
---
Для цитирования: Чернышев В.А., Зинченко К.А., Лопатин В.В., Утепов А.Е., Осотов В.Н. Оценка состояния изоляционной системы энергетического оборудования методом регистрации токов поляризации // Вестник МЭИ. 2025. № 4. С. 11—21. DOI: 10.24160/1993-6982-2025-4-11-21
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Bhuvaneswari G., Mahanta B.C. Global Transformer Failure Analysis. IEEE Transactionson Power Delivery. 2020;35(3):1234—1242.
2. U.S. Department of Energy (DOE) 2019 Sustainability Rep. and Implementation Plan [Elektron. Resurs] https://www.energy.gov/sites/prod/files/2019/11/f68/doe-2019-sustainability-plan.pdf (Data Obrashcheniya 13.01.2025).
3. OAO «Sistemnyy Operator Edinoy Energeticheskoy Sistemy». Godovoy Otchet za 2020 g. [Elektron. Resurs] https://www.so-ups.ru/fileadmin/files/company/reports/annual/2020/annual_2020.pdf (Data Obrashcheniya 13.01.2025). (in Russian).
4. Gruppa Rosseti. Godovoy Otchet za 2021 g. [Elektron. Resurs] https://www.rosseti.ru/shareholders-and-investors/disclosure-of-information/annual-reports/ (Data Obrashcheniya 13.01.2025). (in Russian).
5. Ministerstvo Energetiki Rossiyskoy Federatsii. Obzor Sostoyaniya Energeticheskoy Sistemy Rossii v 2020 g. [Elektron. Resurs] http://minenergo.gov.ru/ (Data Obrashcheniya 13.01.2025). (in Russian).
6. CIGRE Working Group 12.18. Guidelines for Life Management Techniques for Power Transformers: Draft Final Report Rev. 2.
7. Dixit A. e. a. Investigation of Cellulose Insulation Ageing in Transformers Retrofilled with Ester Fluids at Different Service Years. IEEE Trans. Dielectrics and Electrical Insulation. 2024;31(4):2151—2160.
8. Fofana I., Hadjadi Y. Electrical-based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers. Energies. 2016;9:679
9. Schleif F.R. Corrections for Dielectric Absorption in High Voltage D-C Insulation Tests. AIEE Trans. 1956;75:111.
10. Nemeth E. Measuring Voltage Response a Nondestructive Diagnostic Test Method of HV Insulation. IEEE Proc. Sci. Measurement and Technol. 1999;146(5):249—252.
11. Alekseev B.A. Kontrol' Vlazhnosti Izolyatsii Silovykh Transformatorov. Ispol'zovanie Polyarizatsionnykh Yavleniy. Elektricheskie Stantsii. 2004;2:57—63. (in Russian).
12. Jian Hao, Chen G. Quantitative Analysis Ageing Status of Natural Ester-paper Insulation and Mineral Oil-paper Insulation by Polarization. IEEE Trans. Dielectrics and Electrical Insulation. 2012;19(1):188—199.
13. Chernyshev V.A., Zinchenko K.A., Obraztsov S.A. Diagnostika Sostoyaniya Izolyatsionnoy Sistemy Energeticheskogo Oborudovaniya s Pomoshch'yu Kontrolya Plotnosti Toka Dielektricheskoy Absorbtsii. Metody i Sredstva Otsenki Sostoyaniya Energeticheskogo Oborudovaniya. Aktual'nye Voprosy Diagnostirovaniya, Ekspluatatsii i Remonta Elektrotekhnicheskogo Oborudovaniya. 2022;51:18—28. (in Russian).
14. Chernyshev V.A. i dr. Spektry Tokov Dielektricheskoy Absorbtsii i Ikh Diagnosticheskie Vozmozhnosti. Diagnostika Sostoyaniya Izolyatsionnoy Sistemy Energeticheskogo Oborudovaniya. Vestnik MEI. 2025;3:11—23. (in Russian)
---
For citation: Chernyshev V.A., Zinchenko K.A., Lopatin V.V., Utepov A.E., Osotov V.N. Assessment of the Condition of the Insulating System of Power Equipment by the Method of Recording Polarization Currents. Bulletin of MPEI. 2025;4:11—21. (in Russian). DOI: 10.24160/1993-6982-2025-4-11-21
---
Conflict of interests: the authors declare no conflict of interest

