A Bidirectional Buck Converter Control System with Combination of Continuous Conduction and Active Discontinuous Conduction Modes
DOI:
https://doi.org/10.24160/1993-6982-2025-4-37-46Keywords:
buck converter, SiC MOSFET, wide-bandgap devices, conduction mode, energy efficiencyAbstract
One of the of bidirectional buck converter applications in a hybrid electric powertrain is charging the storage battery or fuel cell when it is necessary to ensure additional power of traction motors with simultaneous stabilization of voltage. To increase the specific power and energy conversion efficiency, it is recommended to use switches with a wide-bandgap such as SiC MOSFET instead of IGBTs. Due to the bidirectional conduction mode, they can be used to bypass the free-wheeling diodes during operation with low and close-to-zero currents, implementing the active discontinuous conduction mode and thereby reducing ohmic loss. The article describes an algorithm of an active discontinuous conduction mode for bidirectional buck voltage converters with SiC MOSFET switches. The simulation results show the control system operation with the active discontinuous conduction mode for the powertrain considered. By using the proposed active discontinuous conduction mode algorithm, it becomes possible to decrease the loss during operation at low power by several times in comparison with other converter operation modes.
References
2. Лебедева М.В., Яштулов Н.А. Топливные элементы — характеристика, физико-химические параметры, применение. М.: Мир науки, 2020.
3. Cheng H. e. a. An Integrated Electrified Powertrain Topology with SRG and SRM for Plug-in Hybrid Electrical Vehicle // IEEE Trans. Industrial Electronics. 2020. V. 67(10). Pp. 8231—8241.
4. Dusmez S., Hasanzadeh A., Khaligh A. Comparative Analysis of a Bidirectional Three-level DC-DC Converter for Automotive Applications // IEEE Trans. Industrial Electronics. 2015. V. 62(5). Pp. 3305—3315.
5. Khan M.A., Husain I., Sozer Y. A Bidirectional DC-DC Converter with Overlapping Input and Output Voltage Ranges and Vehicle to Grid Energy Transfer Capability // IEEE J. Emerging and Selected Topics in Power Electronics. 2014. V. 2(3). Pp. 507—516.
6. Abramushkina E.E. e. a. An Innovative Additively Manufactured Design Concept of a Dual-sided Cooling System for SiC Automotive Inverters // IEEE Access. 2024. V. 12. Pp. 20454—20470.
7. Vahid S., Zolfi P., Land J.C., EL-Refaie A.M. An Isolated Step-down Multi-port DC-DC Power Converter for Electric Refrigerated Vehicles Auxiliary Power Unit System // IEEE Trans. Industry Appl. 2024. V. 60(1). Pp. 730—744.
8. Kozachenko V.F., Ostrirov V.N., Lashkevich M.M. Electric Transmission Based on the Switched Reluctance Motor with Independent Excitation // Russian Electrical Eng. 2014. V. 85. Pp. 115—120.
9. Peng J., Zhang H., Ma C., He H. Powertrain Parameters Optimization for a Series-parallel Plug-in Hybrid Electric Bus by Using a Combinatorial Optimization Algorithm // IEEE J. Emerging and Selected Topics in Power Electronics. 2023. V. 11(1). Pp. 32—43.
10. Garcıa-Chavez R.E. e. a. Sliding Mode and PI-based Control for the SISO “Full-Bridge Buck Inverter–DC Motor” System Powered by Renewable Energy // IEEE Access. 2024. V. 12. Pp. 27399—27410.
11. Firpo P. e. a. Use of a Partially Saturating Inductor in a Boost Converter with Model Predictive Control // Electronics. 2023. V. 12. P. 3013.
12. Ullah A., Rizvi S.S., Khatoon A., Jin Kwon S. The Empirical Analysis, Mathematical Modeling, and Advanced Control Strategies for Buck Converter // IEEE Access. 2024. V. 12. Pp. 19924—19941.
13. Le Hoai Nam, Orikawa K., Itoh J.-I. DCM Control Method of Boost Converter Based on Conventional CCM Control // Proc. Intern. Power Electronics Conf. Hiroshima, 2014. Pp. 3659—3666.
14. Anuchin A. e. a. Nested Loop Control of a Buck Converter under Variable Input Voltage and Load Conditions // Proc. 55th Intern. Universities Power Eng. Conf. Turin, 2020. Pp. 1—5.
15. Orabi M., Shawky A. Proposed Switching Losses Model for Integrated Point-of-load Synchronous Buck Converters // IEEE Trans. Power Electronics. 2015. V. 30(9). Pp. 5136—5150.
16. Acquaviva A., Thiringer T. Energy Efficiency of a SiC MOSFET Propulsion Inverter Accounting for the MOSFET's Reverse Conduction and the Blanking Time // Proc. IXX European Conf. Power Electronics and Appl. Warsaw, 2017. Pp. P.1—P.9.
17. Stolyarov E. e. a. Comparative Analysis of Active Damping Techniques in Electric and Hybrid Electric Powertrains // Proc. Intern. Conf. Electromechanical and Energy Systems. Iasi, 2021. Pp. 1—5.
---
Для цитирования: Столяров Е.О., Юсеф Али, Лашкевич М.М., Демидова Г.Л., Кулик Е.С., Анучин А.С. Система управления двунаправленным понижающим преобразователем напряжения с комбинированием режима непрерывных токов и активного режима прерывистых токов // Вестник МЭИ. 2025. № 4. С. 37—46. DOI: 10.24160/1993-6982-2025-4-37-46
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Bradley M. Identification and Descriptions of Fuel Cell Architectures for Aircraft Applications. Proc. IEEE Transportation Electrification Conf. & Expo (ITEC). Anaheim, 2022:1047—1050.
2. Lebedeva M.V., Yashtulov N.A. Toplivnye Elementy — Kharakteristika, Fiziko-Khimicheskie Parametry, Primenenie. M.: Mir Nauki, 2020. (in Russian).
3. Cheng H. e. a. An Integrated Electrified Powertrain Topology with SRG and SRM for Plug-in Hybrid Electrical Vehicle. IEEE Trans. Industrial Electronics. 2020;67(10):8231—8241.
4. Dusmez S., Hasanzadeh A., Khaligh A. Comparative Analysis of a Bidirectional Three-level DC-DC Converter for Automotive Applications. IEEE Trans. Industrial Electronics. 2015;62(5):3305—3315.
5. Khan M.A., Husain I., Sozer Y. A Bidirectional DC-DC Converter with Overlapping Input and Output Voltage Ranges and Vehicle to Grid Energy Transfer Capability. IEEE J. Emerging and Selected Topics in Power Electronics. 2014;2(3):507—516.
6. Abramushkina E.E. e. a. An Innovative Additively Manufactured Design Concept of a Dual-sided Cooling System for SiC Automotive Inverters. IEEE Access. 2024;12:20454—20470.
7. Vahid S., Zolfi P., Land J.C., EL-Refaie A.M. An Isolated Step-down Multi-port DC-DC Power Converter for Electric Refrigerated Vehicles Auxiliary Power Unit System. IEEE Trans. Industry Appl. 2024;60(1):730—744.
8. Kozachenko V.F., Ostrirov V.N., Lashkevich M.M. Electric Transmission Based on the Switched Reluctance Motor with Independent Excitation. Russian Electrical Eng. 2014;85:115—120.
9. Peng J., Zhang H., Ma C., He H. Powertrain Parameters Optimization for a Series-parallel Plug-in Hybrid Electric Bus by Using a Combinatorial Optimization Algorithm. IEEE J. Emerging and Selected Topics in Power Electronics. 2023;11(1):32—43.
10. Garcıa-Chavez R.E. e. a. Sliding Mode and PI-based Control for the SISO “Full-Bridge Buck Inverter–DC Motor” System Powered by Renewable Energy. IEEE Access. 2024;12:27399—27410.
11. Firpo P. e. a. Use of a Partially Saturating Inductor in a Boost Converter with Model Predictive Control. Electronics. 2023;12:3013.
12. Ullah A., Rizvi S.S., Khatoon A., Jin Kwon S. The Empirical Analysis, Mathematical Modeling, and Advanced Control Strategies for Buck Converter. IEEE Access. 2024;12:19924—19941.
13. Le Hoai Nam, Orikawa K., Itoh J.-I. DCM Control Method of Boost Converter Based on Conventional CCM Control. Proc. Intern. Power Electronics Conf. Hiroshima, 2014:3659—3666.
14. Anuchin A. e. a. Nested Loop Control of a Buck Converter under Variable Input Voltage and Load Conditions. Proc. 55th Intern. Universities Power Eng. Conf. Turin, 2020:1—5.
15. Orabi M., Shawky A. Proposed Switching Losses Model for Integrated Point-of-load Synchronous Buck Converters. IEEE Trans. Power Electronics. 2015;30(9):5136—5150.
16. Acquaviva A., Thiringer T. Energy Efficiency of a SiC MOSFET Propulsion Inverter Accounting for the MOSFET's Reverse Conduction and the Blanking Time. Proc. IXX European Conf. Power Electronics and Appl. Warsaw, 2017:P.1—P.9.
17. Stolyarov E. e. a. Comparative Analysis of Active Damping Techniques in Electric and Hybrid Electric Powertrains. Proc. Intern. Conf. Electromechanical and Energy Systems. Iasi, 2021:1—5
---
For citation: Stolyarov E.O., Ali Yousef, Lashkevich M.M., Demidova G.L., Kulik E.S., Anuchin A.S. A Bidirectional Buck Converter Control System with Combination of Continuous Conduction and Active Discontinuous Conduction Modes. Bulletin of MPEI. 2025;4:¬37—46. (in Russian). DOI: 10.24160/1993-6982-2025-4-37-46
---
Conflict of interests: the authors declare no conflict of interest

