Electric Power System Stability Conditions with the Integral Excitation Control of Synchronous Generators

Authors

  • Олег [Oleg] Николаевич [N.] Кузнецов [Kuznetsov]
  • Никита [Nikita] Александрович [A.] Каримов [Karimov]

DOI:

https://doi.org/10.24160/1993-6982-2025-4-56-63

Keywords:

integral control, automatic excitation control, electric power system stability, voltage regulation

Abstract

Stable operation of an electric power system is currently among the power industry’s most pressing issues. The problem is connected with a change in the power system dynamic characteristics caused by the development of distributed generation facilities, renewable energy sources, and installations containing power electronics. These circumstances generate the need for further improvement and adaptation of automatic excitation control systems of synchronous generators for securing the power system stability. The article addresses matters concerned with application of an integral law for excitation control of synchronous generators. The subject of the study is a synchronous generator equipped with an automatic excitation controller, which is connected to a power system via a step-up transformer and transmits power through a two-circuit transmission line. The power system receiving end is represented by an infinite bus with constant voltage, frequency, and phase. The electric power system stability conditions were studied using the D-partitioning method and the Mikhailov stability criterion. The study results were tested using a mathematical model in the MATLAB software system with applying the Simulink library package. An example of using an algorithm for selecting the integral controller tuning parameter for the mathematical model test data is given. The variation of the Mikhailov root locus curve at different values of the integration time constant is analyzed. Based on the study results, conclusions have been drawn about the possibility of ensuring small-signal aperiodic and oscillatory stability of a synchronous generator equipped with an integral excitation controller and about the permissibility of applying the integral control law in the power system.

Author Biographies

Олег [Oleg] Николаевич [N.] Кузнецов [Kuznetsov]

Ph.D. (Techn.), Assistant Professor of Power Electrical Systems Dept., NRU MPEI, e-mail: Kuzne-tsovON@mpei.ru

Никита [Nikita] Александрович [A.] Каримов [Karimov]

Ph.D.-student of Power Electrical Systems Dept., NRU MPEI, e-mail: KarimovNA@mpei.ru

References

1. Денисенко В.В. ПИД регуляторы: вопросы реализации // Современные технологии автоматизации. 2006. № 4. С. 66—74.
2. Ziegler J.G., Nichols N.B., Rochester N.Y. Optimum Settings for Automatic Controllers // J. Fluids Eng. 1942. V. 11. Pp. 759—795.
3. Chien K.L., Hrones J.A., Reswick J.B. On Automatic Control of Generalized Passive Systems // Trans. ASME. 1952. V. 74. Pp. 175—185.
4. George R.G., Hasanien H.M., Badr M.A, Elgendy M.A. A Comparative Study among Different Algorithms Investigating Optimum Design of PID Controller in Automatic Voltage Regulator // Proc. 53rd Intern. Universities Power Eng. Conf. Glasgow, 2018
5. Kiyong K.R., Schaefer C. Tuning a PID Controller for a Digital Excitation Control System // IEEE Trans. Industry Appl. 2005. V. 41(2). Pp. 485—492.
6. Zimmer H., Niersbach B., Hanson J. Optimization of Power Plant AVR Parameters to Improve Transient Voltage Stability // Proc. XI IEEE Intern. Conf. Compatibility, Power Electronics and Power Eng. Cadiz, 2017. Pp. 71—76.
7. Devaraj D., Selvabala B. Real-coded Genetic Algorithm and Fuzzy Logic Approach for Real-time Tuning of Proportional–integral–derivative Controller in Automatic Voltage Regulator System // IET Generation, Transmission and Distribution. 2009. V. 3(7). Pp. 641—649.
8. Salih A.M., Humod A.T., Hasan F.A. Optimum Design for PID-ANN Controller for Automatic Voltage Regulator of Synchronous Generator // Proc. IV Sci. Intern. Conf. Al-Najef, 2019. Pp. 74—79.
9. Habbi F. e. a. Output Voltage Control of Synchronous Generator using Nelder–Mead Algorithm Based PI Controller // Proc. XVIII Intern. Multiconf. Systems, Signals & Devices. Monastir, 2021. Pp. 365—374.
10. Liuping Wang. PID Control System Design and Automatic Tuning using MATLAB/Simulink. Pt. 9. Automatic Tuning of PID Controllers. N.-Y.: Wiley-IEEE Press, 2020. Pp. 259—304.
11. Справочник по проектированию электрических сетей. М.: НЦ ЭНАС, 2005.
---
Для цитирования: Кузнецов О.Н., Каримов Н.А. Условия устойчивости электроэнергетической системы при интегральном законе регулирования возбуждения синхронных генераторов // Вестник МЭИ. 2025. № 4. С. 56—63. DOI: 10.24160/1993-6982-2025-4-56-63
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Denisenko V.V. PID Regulyatory: Voprosy Realizatsii. Sovremennye Tekhnologii Avtomatizatsii. 2006;4:66—74. (in Russian).
2. Ziegler J.G., Nichols N.B., Rochester N.Y. Optimum Settings for Automatic Controllers. J. Fluids Eng. 1942;11:759—795.
3. Chien K.L., Hrones J.A., Reswick J.B. On Automatic Control of Generalized Passive Systems. Trans. ASME. 1952;74:175—185.
4. George R.G., Hasanien H.M., Badr M.A, Elgendy M.A. A Comparative Study among Different Algorithms Investigating Optimum Design of PID Controller in Automatic Voltage Regulator. Proc. 53rd Intern. Universities Power Eng. Conf. Glasgow, 2018
5. Kiyong K.R., Schaefer C. Tuning a PID Controller for a Digital Excitation Control System. IEEE Trans. Industry Appl. 2005;41(2):485—492.
6. Zimmer H., Niersbach B., Hanson J. Optimization of Power Plant AVR Parameters to Improve Transient Voltage Stability. Proc. XI IEEE Intern. Conf. Compatibility, Power Electronics and Power Eng. Cadiz, 2017:71—76.
7. Devaraj D., Selvabala B. Real-coded Genetic Algorithm and Fuzzy Logic Approach for Real-time Tuning of Proportional–integral–derivative Controller in Automatic Voltage Regulator System. IET Generation, Transmission and Distribution. 2009;3(7):641—649.
8. Salih A.M., Humod A.T., Hasan F.A. Optimum Design for PID-ANN Controller for Automatic Voltage Regulator of Synchronous Generator. Proc. IV Sci. Intern. Conf. Al-Najef, 2019:74—79.
9. Habbi F. e. a. Output Voltage Control of Synchronous Generator using Nelder–Mead Algorithm Based PI Controller. Proc. XVIII Intern. Multiconf. Systems, Signals & Devices. Monastir, 2021:365—374.
10. Liuping Wang. PID Control System Design and Automatic Tuning using MATLAB/Simulink. Pt. 9. Automatic Tuning of PID Controllers. N.-Y.: Wiley-IEEE Press, 2020:259—304.
11. Spravochnik po Proektirovaniyu Elektricheskikh Setey. M.: NTS ENAS, 2005. (in Russian)
---
For citation: Kuznetsov O.N., Karimov N.A. Electric Power System Stability Conditions with the Integral Excitation Control of Synchronous Generators. Bulletin of MPEI. 2025;4:56—63. (in Russian). DOI: 10.24160/1993-6982-2025-4-56-63
---
Conflict of interests: the authors declare no conflict of interest

Published

2025-06-24

Issue

Section

Electric Power Industry (Technical Sciences) (2.4.3)