Optimizing the Composition of Units Operating at a Hydroelectric Power Plant Using the Method of Successive Concessions Subject to Operating Constraints

Authors

  • Дмитрий [Dmitriy] Алексеевич [A.] Мочалов [Mochalov]
  • Михаил [Mikhail] Георгиевич [G.] Тягунов [Tyagunov]

DOI:

https://doi.org/10.24160/1993-6982-2025-4-78-85

Keywords:

multi-criterion optimization, criteria priorities, successive concessions method, composition of hydroelectric units, daily operating schedule, water flow rate, remaining service life, number of operating hydroelectric units

Abstract

The legislation in the water management and electricity sectors of economy imposes significant limitations on the ability of hydroelectric power plant (HPP) owners to change the HPP operation mode at their own discretion. In cases where less efficient HPP performance is stemming from an operation mode that is unprofitable for the HPP, it is necessary to analyze the improvement of its operation mode in correspondence with the requirements and constraints imposed by the power system, i.e., to perform intra-plant optimization.

The aim of the study is to apply the authors’ proprietary methodology for solving the problem of optimizing the composition of operating units at an HPP using the method of successive concessions (SCM) to analyze the results obtained, and formulate practical recommendations based on these results.

The article considers the solution of one of problems relating to intra-plant optimization of HPPs, namely, optimizing the composition of operating hydroelectric power units through the use of the SCM. The proposed approach is based on multi-criterion optimization and utilizes the ranking of relevant criteria by their priorities.

A distinctive feature of the SCM is the use of so-called concessions, which are understood to mean allowable deviations of parameter values from their optimal targets with respect to each of the criteria considered. As a result, a set of allowable solutions is obtained. Parameter measurement uncertainties (e.g., water flow rate), regulatory and technical constraints, such as maintaining of downstream basin water levels, ensuring the spinning capacity margin, etc., can serve as concessions. As a result, the tradeoff between the criteria becomes less biased in comparison with other multi-criterion optimization methods.

The study results include calculation of the HPP daily operation mode based on different sets and priorities of optimization criteria, with the concessions specified for them. The data obtained have been evaluated using a set of characteristic and statistical indicators. As a result, it has become possible to formulate recommendations on selecting appropriate sets of criteria depending on the constraints imposed on the HPP operation mode.

The study results can be used in the development of automated control systems and decision-support information systems for HPPs.

It has been shown from the study results that the selected set and prioritization of criteria have an effect on the operation mode of HPP units in terms of both the efficiency and reliability of HPP operation and should be determined in accordance with the HPP current operating conditions and subject to the requirements imposed on the plant operation mode hydrological and electrical components.

Author Biographies

Дмитрий [Dmitriy] Алексеевич [A.] Мочалов [Mochalov]

Ph.D.-student of Hydro Power Engineering and Renewable Energy Sources Dept., NRU MPEI, e-mail: mochalovda@mpei.ru

Михаил [Mikhail] Георгиевич [G.] Тягунов [Tyagunov]

Dr.Sci. (Techn.), Professor of Hydro Power Engineering and Renewable Energy Sources Dept., NRU MPEI, e-mail: mtyagunov@mail.ru

References

1. СТО 17330282.27.140.015—2008. Гидроэлектростанции. Организация эксплуатации и технического обслуживания. Нормы и требования.
2. Секретарев Ю.А., Федорова Я.В. Применение теории возможностей для многоцелевого ситуационного управления составом гидроагрегатов на ГЭС. Новосибирск: Изд-во НГТУ, 2022.
3. Алябышева Т.М., Цурлуков В.А., Юркин А.Г. Моделирование краткосрочных режимов работы каскадов ГЭС // Энергия единой сети. 2012. № 4. С. 62—69.
4. Захарченко В.Е. Развитие теоретических основ и реализация автоматизированного управления активной мощностью и составом задействованных агрегатов ГЭС: автореф. дис. … доктора техн. наук. Иваново: Ивановский гос. техн. ун-т им. В.И. Ленина, 2021.
5. Daadaa M., Seguin S., Demeester K., Anjos M.F. An Optimization Model to Maximize Energy Generation in Short-term Hydropower Unit Commitment Using Efficiency Points // Intern. J. Electrical Power & Energy Systems. 2021. V. 125(06). P. 106419.
6. Zhang T., Zhou J., Yang X., Li H. Multi‐objective Optimization and Decision‐making of the Combined Control Law of Guide Vane and Pressure Regulating Valve for Hydroelectric Unit // Energy Sci. & Eng. 2021. V. 10(2). Pp. 482—487.
7. Pan H. e. a. Optimization of Load Distribution Method for Hydropower Units Based on Output Fluctuation Constraint and Double-layer Nested Model // Mathematics. 2024. V. 12(5). P. 662.
8. Wu X. e. a. A Mixed-integer Linear Programming Model for Hydro Unit Commitment Considering Operation Constraint Priorities // Renewable Energy. 2023. V. 204. Pp. 507—520.
9. Liu S. e. a. Hydropower Unit Commitment Using a Genetic Algorithm with Dynamic Programming // Energies. 2023. V. 16(15). P. 5842.
10. СТО «РусГидро» 06.01.84—2013. Гидроэлектростанции. Планирование водноэнергетических режимов. Методические указания.
11. Мочалов Д.А., Тягунов М.Г. Подход к оптимизации состава работающих гидроагрегатов ГЭС с использованием ранжирования критериев // Непорожневские чтения — 2024: Материалы Всерос. науч.-практ. конф. СПб.: Политех-Пресс, 2024. С. 73—81.
12. СТО 17330282.27.140.001—2006. Методики оценки технического состояния основного оборудования гидроэлектростанций.
---
Для цитирования: Мочалов Д.А. Тягунов М.Г. Применение метода последовательных уступок для оптимизации состава работающих агрегатов гидроэлектростанции с учетом режимных условий // Вестник МЭИ. 2025. № 4. С. 78—85. DOI: 10.24160/1993-6982-2025-4-78-85
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. STO 17330282.27.140.015—2008. Gidroelektrostantsii. Organizatsiya Ekspluatatsii i Tekhnicheskogo Obsluzhivaniya. Normy i Trebovaniya. (in Russian).
2. Sekretarev Yu.A., Fedorova Ya.V. Primenenie Teorii Vozmozhnostey dlya Mnogotselevogo Situatsionnogo Upravleniya Sostavom Gidroagregatov na GES. Novosibirsk: Izd-vo NGTU, 2022. (in Russian).
3. Alyabysheva T.M., Tsurlukov V.A., Yurkin A.G. Modelirovanie Kratkosrochnykh Rezhimov Raboty Kaskadov GES. Energiya Edinoy Seti. 2012;4:62—69. (in Russian).
4. Zakharchenko V.E. Razvitie Teoreticheskikh Osnov i Realizatsiya Avtomatizirovannogo Upravleniya Aktivnoy Moshchnost'yu i Sostavom Zadeystvovannykh Agregatov GES: Avtoref. Dis. … Doktora Tekhn. Nauk. Ivanovo: Ivanovskiy Gos. Tekhn. Un-t im. V.I. Lenina, 2021. (in Russian).
5. Daadaa M., Seguin S., Demeester K., Anjos M.F. An Optimization Model to Maximize Energy Generation in Short-term Hydropower Unit Commitment Using Efficiency Points. Intern. J. Electrical Power & Energy Systems. 2021;125(06):106419.
6. Zhang T., Zhou J., Yang X., Li H. Multi‐objective Optimization and Decision‐making of the Combined Control Law of Guide Vane and Pressure Regulating Valve for Hydroelectric Unit. Energy Sci. & Eng. 2021;10(2):482—487.
7. Pan H. e. a. Optimization of Load Distribution Method for Hydropower Units Based on Output Fluctuation Constraint and Double-layer Nested Model. Mathematics. 2024;12(5):662.
8. Wu X. e. a. A Mixed-integer Linear Programming Model for Hydro Unit Commitment Considering Operation Constraint Priorities. Renewable Energy. 2023;204:507—520.
9. Liu S. e. a. Hydropower Unit Commitment Using a Genetic Algorithm with Dynamic Programming. Energies. 2023;16(15):5842.
10. STO «RusGidro» 06.01.84—2013. Gidroelektrostantsii. Planirovanie Vodnoenergeticheskikh Rezhimov. Metodicheskie Ukazaniya. (in Russian).
11. Mochalov D.A., Tyagunov M.G. Podkhod k Optimizatsii Sostava Rabotayushchikh Gidroagregatov GES s Ispol'zovaniem Ranzhirovaniya Kriteriev. Neporozhnevskie Chteniya — 2024: Materialy Vseros. Nauch.-prakt. Konf. SPb.: Politekh-Press, 2024:73—81. (in Russian).
12. STO 17330282.27.140.001—2006. Metodiki Otsenki Tekhnicheskogo Sostoyaniya Osnovnogo Oborudovaniya Gidroelektrostantsiy. (in Russian)
---
For citation: Mochalov D.A., Tyagunov M.G. Optimizing the Composition of Units Operating at a Hydroelectric Power Plant Using the Method of Successive Concessions Subject to Operating Constraints. Bulletin of MPEI. 2025;4:78—85. (in Russian). DOI: 10.24160/1993-6982-2025-4-78-85
---
Conflict of interests: the authors declare no conflict of interest

Published

2025-06-24

Issue

Section

Energy Systems and Complexes (2.4.5)