Experimental Determination of the Ignition and Combustion Characteristics of Diesel and Biodiesel Fuels for a Power Plant Based on an Internal Combustion Engine

Authors

  • Али [Ali] Исмаил [Ismail]
  • Эдик [Edik] Койрунович [K.] Аракелян [Arakelyan]

DOI:

https://doi.org/10.24160/1993-6982-2025-4-146-155

Keywords:

experimental study, approbation, biodiesel fuel, combustion of fuel droplets, energy characteristics, results, automated power plant

Abstract

The rapid improvement in the standard of living of mankind, increase of industrial production volumes, and growth of population have resulted in an essentially larger amounts of energy consumption in recent decades. Fossil fuels as the main source of energy play an important role for transport, industry, and agriculture. However, very high amounts in which these fuels are consumed have give rise to currently faced environmental problems. The problems of energy security and environmental pollution have forced many researchers in different countries to look for alternative ways of using renewable and environmentally friendly fuels, including those based on biofuels. The aim of the present study is to analyze the scientific and technical problem, the methodology for producing biodiesel from rapeseed oil, and testing its use in an automated power plant based on internal combustion engines (ICE). To this end, the parameters characterizing the ignition and combustion of droplets of petroleum diesel fuel and the obtained biodiesel were experimentally studied along with carrying out a set of experiments on trial production of biodiesel and determining the parameters characterizing the ignition and combustion of new and conventional fuels for internal combustion engines. The article presents the results of an analysis of the problem under study and experiments conducted to obtain biodiesel, study its energy characteristics, and its use in internal combustion engines. The ignition characteristics of droplets of conventional petroleum diesel and droplets of composite fuel with addition of biodiesel have been obtained. A technology for producing biodiesel from rapeseed oil has been studied and tested under laboratory conditions. A simplified structure of a system for automated control of a small-capacity ICE-based power plant has been developed.

Author Biographies

Али [Ali] Исмаил [Ismail]

Ph.D.-student of Automated Control Systems for Thermal Processes Dept., NRU MPEI, e-mail: IsmailAl@mpei.ru

Эдик [Edik] Койрунович [K.] Аракелян [Arakelyan]

Doctor of Technical Sciences, Professor, Honored Worker of Higher Education, Professor of Automated Control Systems for Thermal Processes Dept., NRU MPEI, e-mail: Edik_arakelyan@inbox.ru

References

1. Chen X.-P., Wang Y.-D., Wu Q.-M. A Bio-fuel Power Generation System with Hybrid Energy Storage under a Dynamic Programming Operation Strategy // IEEE Access. 2019. V. 7. Pp. 64966—64977.
2. Suanes G. e. a. Principles for the Design of a Biomass-fueled Internal Combustion Engine // Energies. 2024. V. 7 (17). P. 1700.
3. Bousbaa H. e. a. Prediction and Simulation of Biodiesel Combustion in Diesel Engines: Evaluating Physicochemical Properties, Performance, and Emissions // Fire. 2024. V. 10(7). P. 364.
4. Asase R.V., Okechukwu Q.N., Ivantsova M.N. Biofuels: Present and Future // Environment Development and Sustainability. 2024. Pp. 1—29.
5. Vairamuthu G., Sundarapandian S., Thangagiri B. Experimental Investigations on the Influence of Properties of Calophyllum Inophyllum Biodiesel on Performance, Combustion, and Emission Characteristics of a DI Diesel Engine // Int J Ambient Energy. 2015. V. 37(6). Pp. 616—624.
6. Sathasivam D., Boopathi M., Balachandran S., Gobinath R. Experimental Investigation of Performance and Emission Characteristics of Diesel-bio Diesel (CSOME) with Nano Additive Blends in CI Engine // Advances Automobile Eng. 2018. V. 7(1). P. 1000176.
7. Mahesh S.E., Ramanathan A., Begum K.M.M.S., Narayanan A. Biodiesel Production From Waste Cooking Oil Using KBr impregnated CaO as Catalyst // Energy Convers. Manag. 2015. V. 91. Pp. 442—450.
8. Çelik M., Bayındırlı C., Mehregan M. Multi-objective Optimization of a Diesel Engine Fueled with Different Fuel Types Containing Additives Using Grey-based Taguchi Approach // Environ Sci. Pollut. Res. 2022. V. 29(20). Pp. 30277—30284.
9. Demirbas A. Biofuels Sources, Biofuel Policy, Biofuel Economy and Global Biofuel Projections // Energy Convers. Manag. 2008. V. 49(8). Pp. 2106—2116.
10. Coyle W. The Future of Biofuels: a Global Perspective // J. Rural Mental Health. 2008. V. 5(5). P. 80.
11. Abbaszaadeh A. e. a. Current Bio-diesel Production Technologies: a Comparative Review // Energy Convers. Manage. 2012. V. 63. Pp. 138—148.
12. Lawrence P., Koshy Mathews P., Deepanraj B. Effect of Prickly Poppy Methyl Ester on CI Engine Performance and Emission Characteristics // American J. Environ. Sci. 2011. V. 7(2). Pp. 145—149.
13. Hosseini S.E., Wahid M.A. Necessity of Bio-diesel Utilization as a source of Renewable Energy in Malaysia // Renewable Sustain Energy Rev. 2012. V. 16(8). Pp. 5732—5740.
14. Srinivasa Rao M, Anand R.B. Production Characterization and Working Characteristics in DICI Engine of Pongamia Bio-diesel // Ecotoxicol Environ. Saf. 2015. V. 121. Pp. 16—21.
15. Lloyd A.C., Cackette T.A. Diesel Engines: Environmental Impact and Control // J. Air Waste Manag. Assoc. 2001. V. 51(6). Pp. 809—847.
16. Kannan M., Karthikeyan R., Deepanraj B., Baskaran R. Feasibility and Performance Study of Turpentine Fueled DI Diesel Engine Operated under HCCI Combustion Mode // J Mech. Sci. Technol. 2014. V. 28(2). Pp. 729—737.
17. Mallikappa D.N., Reddy R.P., Murthy C.S.N. Performance and Emission Characteristics of Double Cylinder CI Engine Operated with Cardanol Bio Fuel Blends // Renewable Energy. 2012. V. 38(1). Pp. 150—154.
18. Ameer B.S., Raja Gopal K., Jebaraj S. A Review on Bio-diesel Production, Combustion, Emissions and Performance // Renewable Sustain Energy Rev. 2009. V. 13(6—7). Pp. 1628—1634.
19. Abbaszaadeh A. e. a. Current Bio-diesel Production Technologies: a Comparative Review // Energy Convers. Manag. 2012. V. 63. Pp. 138—148.
20. Haldar S.K., Ghosh B.B., Nag A. Studies on the Comparison of Performance and Emission Characteristics of a Diesel Engine Using Three Degummed Non-edible Vegetable Oils // Biomass Bioenergy. 2009. V. 33(8). Pp. 1013—1018.
21. Saravanan S. e. a. Feasibility Study of Crude Rice Bran Oil as a Diesel Substitute in a DI-CI Engine without Modifications // Energy Sustain. Dev. 2007. V. 11(3). Pp. 83—92.
22. Naga Prasad C.S. e. a. Performance and Emission Characteristics of a Diesel Engine with Castor Oil // Indian J. Sci. Technol. 2009. V. 2(10). Pp. 25—31.
23. Deepanraj B. e. a. Transesterified Palm Oil as an Alternate Fuel for Compression Ignition Engine // IEEE Intern. Conf. Advances in Eng., Sci. and Management. India, 2012. Pp. 389—392.
24. Deepanraj B. e. a. Use of Palm Oil Bio-diesel Blends as a Fuel for Compression Ignition Engine // American J. Appl. Sci. 2011. V. 8(11). Pp. 1154—1158.
25. Deepanraj B. e. a. Analysis of Preheated Crude Palm Oil, Palm Oil Methyl Ester and Its Blends as Fuel in Diesel Engine // Intern. J. Ambient Energy. 2015. V. 37(5). Pp. 495—500.
26. Викаш Бабу П.Д., Ашиш Таплиял П.Д., Гириеш Кумар Патель П.Д. Возобновляемая энергия: производство биотоплива. Беверли: Изд-во Scrivener Publ., 2014.
27. Марков В.А. и др. Использование растительных масел и топлив на их основе в дизельных двигателях. М.: Инженер, 2011.
28. Бурункова Ю.Э., Успенская М.В., Самуйлова Е.О. Растительные масла: свойства, технологии получения и хранения, окислительная стабильность. СПб: ИТМО, 2020.
29. Raman A. e. a. Experimental Investigation on Performance, Combustion and Emission Analysis of a Direct Injection Diesel Engine Fuelled with Rapeseed Oil Biodiesel // Fuel. 2019. V. 246. Pp. 69—74.
30. Nabertherm [Электрон. ресурс] https://ecoanalytika.com/laboratornoe-oborudovanie/laboratornie-trubchatie-pechi (дата обращения 20.12.2004).
---
Для цитирования: Исмаил Али, Аракелян Э.К. Экспериментальное определение характеристик воспламенения и горения дизельного и биодизельного топлив для электростанции на базе двигателя внутреннего сгорания // Вестник МЭИ. 2025. № 4. С. 146—155. DOI: 10.24160/1993-6982-2025-4-146-155
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Chen X.-P., Wang Y.-D., Wu Q.-M. A Bio-fuel Power Generation System with Hybrid Energy Storage under a Dynamic Programming Operation Strategy. IEEE Access. 2019;7:64966—64977.
2. Suanes G. e. a. Principles for the Design of a Biomass-fueled Internal Combustion Engine. Energies. 2024;7 (17):1700.
3. Bousbaa H. e. a. Prediction and Simulation of Biodiesel Combustion in Diesel Engines: Evaluating Physicochemical Properties, Performance, and Emissions. Fire. 2024;10(7):364.
4. Asase R.V., Okechukwu Q.N., Ivantsova M.N. Biofuels: Present and Future. Environment Development and Sustainability. 2024:1—29.
5. Vairamuthu G., Sundarapandian S., Thangagiri B. Experimental Investigations on the Influence of Properties of Calophyllum Inophyllum Biodiesel on Performance, Combustion, and Emission Characteristics of a DI Diesel Engine. Int J Ambient Energy. 2015;37(6):616—624.
6. Sathasivam D., Boopathi M., Balachandran S., Gobinath R. Experimental Investigation of Performance and Emission Characteristics of Diesel-bio Diesel (CSOME) with Nano Additive Blends in CI Engine. Advances Automobile Eng. 2018;7(1):1000176.
7. Mahesh S.E., Ramanathan A., Begum K.M.M.S., Narayanan A. Biodiesel Production From Waste Cooking Oil Using KBr impregnated CaO as Catalyst. Energy Convers. Manag. 2015;91:442—450.
8. Çelik M., Bayındırlı C., Mehregan M. Multi-objective Optimization of a Diesel Engine Fueled with Different Fuel Types Containing Additives Using Grey-based Taguchi Approach. Environ Sci. Pollut. Res. 2022;29(20):30277—30284.
9. Demirbas A. Biofuels Sources, Biofuel Policy, Biofuel Economy and Global Biofuel Projections. Energy Convers. Manag. 2008;49(8):2106—2116.
10. Coyle W. The Future of Biofuels: a Global Perspective. J. Rural Mental Health. 2008;5(5):80.
11. Abbaszaadeh A. e. a. Current Bio-diesel Production Technologies: a Comparative Review. Energy Convers. Manage. 2012;63:138—148.
12. Lawrence P., Koshy Mathews P., Deepanraj B. Effect of Prickly Poppy Methyl Ester on CI Engine Performance and Emission Characteristics. American J. Environ. Sci. 2011;7(2):145—149.
13. Hosseini S.E., Wahid M.A. Necessity of Bio-diesel Utilization as a source of Renewable Energy in Malaysia. Renewable Sustain Energy Rev. 2012;16(8):5732—5740.
14. Srinivasa Rao M, Anand R.B. Production Characterization and Working Characteristics in DICI Engine of Pongamia Bio-diesel. Ecotoxicol Environ. Saf. 2015;121:16—21.
15. Lloyd A.C., Cackette T.A. Diesel Engines: Environmental Impact and Control. J. Air Waste Manag. Assoc. 2001;51(6):809—847.
16. Kannan M., Karthikeyan R., Deepanraj B., Baskaran R. Feasibility and Performance Study of Turpentine Fueled DI Diesel Engine Operated under HCCI Combustion Mode. J Mech. Sci. Technol. 2014;28(2):729—737.
17. Mallikappa D.N., Reddy R.P., Murthy C.S.N. Performance and Emission Characteristics of Double Cylinder CI Engine Operated with Cardanol Bio Fuel Blends. Renewable Energy. 2012;38(1):150—154.
18. Ameer B.S., Raja Gopal K., Jebaraj S. A Review on Bio-diesel Production, Combustion, Emissions and Performance. Renewable Sustain Energy Rev. 2009;13(6—7):1628—1634.
19. Abbaszaadeh A. e. a. Current Bio-diesel Production Technologies: a Comparative Review. Energy Convers. Manag. 2012;63:138—148.
20. Haldar S.K., Ghosh B.B., Nag A. Studies on the Comparison of Performance and Emission Characteristics of a Diesel Engine Using Three Degummed Non-edible Vegetable Oils. Biomass Bioenergy. 2009;33(8):1013—1018.
21. Saravanan S. e. a. Feasibility Study of Crude Rice Bran Oil as a Diesel Substitute in a DI-CI Engine without Modifications. Energy Sustain. Dev. 2007;11(3):83—92.
22. Naga Prasad C.S. e. a. Performance and Emission Characteristics of a Diesel Engine with Castor Oil. Indian J. Sci. Technol. 2009;2(10):25—31.
23. Deepanraj B. e. a. Transesterified Palm Oil as an Alternate Fuel for Compression Ignition Engine. IEEE Intern. Conf. Advances in Eng., Sci. and Management. India, 2012:389—392.
24. Deepanraj B. e. a. Use of Palm Oil Bio-diesel Blends as a Fuel for Compression Ignition Engine. American J. Appl. Sci. 2011;8(11):1154—1158.
25. Deepanraj B. e. a. Analysis of Preheated Crude Palm Oil, Palm Oil Methyl Ester and Its Blends as Fuel in Diesel Engine. Intern. J. Ambient Energy. 2015;37(5):495—500.
26. Vikash Babu P.D., Ashish Tapliyal P.D., Giriesh Kumar Patel' P.D. Vozobnovlyaemaya Energiya: Proizvodstvo Biotopliva. Beverli: Izd-vo Scrivener Publ., 2014. (in Russian).
27. Markov V.A. i dr. Ispol'zovanie Rastitel'nykh Masel i Topliv na Ikh Osnove v Dizel'nykh Dvigatelyakh. M.: Inzhener, 2011. (in Russian).
28. Burunkova Yu.E., Uspenskaya M.V., Samuylova E.O. Rastitel'nye Masla: Svoystva, Tekhnologii Polucheniya i Khraneniya, Okislitel'naya Stabil'nost'. SPb: ITMO, 2020. (in Russian).
29. Raman A. e. a. Experimental Investigation on Performance, Combustion and Emission Analysis of a Direct Injection Diesel Engine Fuelled with Rapeseed Oil Biodiesel. Fuel. 2019;246:69—74.
30. Nabertherm [Elektron. Resurs] https://ecoanalytika.com/laboratornoe-oborudovanie/laboratornie-trubchatie-pechi (Data Obrashcheniya 20.12.2004). (in Russian)
---
For citation: Ali Ismail, Arakelyan E.K. Experimental Determination of the Ignition and Combustion Characteristics of Diesel and Biodiesel Fuels for a Power Plant Based on an Internal Combustion Engine. Bulletin of MPEI. 2025;4:146—155. (in Russian). DOI: 10.24160/1993-6982-2025-4-146-155
---
Conflict of interests: the authors declare no conflict of interest

Published

2025-06-24

Issue

Section

Automation and Control of Technological Processes and Production (2.3.3)