On the Accuracy of Determining Incident Parameters by Angular Observations: Recurrent Hyperbola Estimate

Authors

  • Юрий [Yuriy] Александрович [A.] Горицкий [Goritskiy]
  • Анна [Anna] Игоревна [I.] Захарова [Zakharova]
  • Ольга [Olga] Васильевна [V.] Шевченко [Shevchenko]

DOI:

https://doi.org/10.24160/1993-6982-2025-4-167-178

Keywords:

incidence parameters, angular observations, random errors, recurrent estimation, Kalman filter, Rao-Kramer inequality

Abstract

The article discusses the possibility of developing a device that determines the point and moment of fall based on angular observations, and whether it is possible to determine the fall location and time with sufficient accuracy for some time before the fall. There is an opinion that angular measurements (in which there is no range information) are unsuitable for obtaining accuracies that are of practical interest. However, if one assumes that the orbit is such that the fall location is in the vicinity of the observer, then such possibility arises.

It is assumed that the body moves at a speed less than the first cosmic speed, at an altitude of tens and a few hundred kilometers. Since angular measurements bear information about the “close” location of fall only during the descent stage, simplifying assumptions are made for the motion-observation model: the acceleration of gravity does not depend on height and, as a consequence, the angular velocity (relative to the center of the Earth) is constant; only the elevation angle is measured (azimuth measurements can be neglected), and the observer’s movement (due to the rotation of the Earth) is transferred to the orbital plane with an insignificant error. The motion model is simplified in comparison with the Kepler motion. Random errors with a given variance are superimposed on discrete elevation angle measurements. Under the accepted conditions, the tangent of the measured angle is expressed by the ratio of a linear function of time (with two unknown parameters) and equations for a hyperbola (with two parameters). The linear function parameters are estimated without problems based on the results of the initial observation section; the whole difficulty is in statistically estimating the hyperbola parameters corresponding to the fall time and location.

A statistical estimation procedure is constructed, which uses the Kalman filter approach with linearization elements. Simulation results on 300 tests for each trajectory are presented. It is shown that it is possible to obtain accuracies of practical interest, and for a time when there is about a minute left before the fall.

The analysis of the above computation scheme depends on six input data. The problem is reduced to a scheme with three conditional parameters. The calculation results on it are presented in graphic form. By using them, one can obtain an estimate of the accuracy for arbitrary input data.

Author Biographies

Юрий [Yuriy] Александрович [A.] Горицкий [Goritskiy]

Dr.Sci. (Techn.) (25.02.1940 — 26.08.2024)

Анна [Anna] Игоревна [I.] Захарова [Zakharova]

Master of Mathematical and Computer Modeling Dept. in the Field of «Applied Mathematics and Computer Science», e-mail: i.zakharova2010@yandex.ru

Ольга [Olga] Васильевна [V.] Шевченко [Shevchenko]

Ph.D. (Techn.), Assistant Professor of Mathematical and Computer Modeling Dept., NRU MPEI, e-mail: olsh@list.ru

References

1. Chang C.B. Optimal State Estimation of Ballistic Trajectories with Angle-only Measurements. Massachusetts: MIT Lincoln Laboratory, 1979.
2. Chang C.B., Tabaczynski J. Application of State Estimation to Target Tracking // IEEE Trans. Automatic Control. 1984. V. 29(2). Pp. 98—109.
3. Саврасов Ю. С. Алгоритмы и программы в радиолокации. М.: Радио и связь, 1985.
4. Колесса А.Е. Пругло А.В., Равдин С.С. Восстановление орбит по угловым измерениям // Радиотехника. 2005. № 10. С. 1—13.
5. Колесса А.Е. Рекуррентные алгоритмы фильтрации для некоторых систем с нелинейностями кусочно-линейного типа // Автоматика и телемеханика. 1986. № 4. С. 48—55.
6. Колесса А.Е. Некоторые прикладные вопросы кусочно-линейной фильтрации // Автоматика и телемеханика. 1986. № 5. С. 61—69.
7. Булычев, В.Ю., Булычев Ю.Г., Ивакина С.С. Пассивная локация на основе угловых и мощностных измерений системы пеленгаторов // Известия РАН. Серия «Теория и системы управления». 2014. № 1. С. 65—73.
8. Булычев В.Ю. и др. Угломерно-энергетический метод нестационарной пассивной локации на базе однопозиционной системы // Известия РАН. Серия «Теория и системы управления». 2015. № 5. С. 122—136.
9. Farina A., Benvenuti D., Ristic B. Tracking a Ballistic Target: Comparison of Several Nonlinear Filters // IEEE Trans. Aerospace and Electronic Systems. 2002. V. 38(3). Pp. 854—867.
10. Farina A., Ristic B., Timmoneri L. Cramer-Rao Bound for Nonlinear Filtering with Pd < 1 and Its Application to Target Tracking // IEEE Trans. Signal Proc. 2002. V. 50(8). Pp. 1916—1924.
11. Ristic B., Farina A., Benvenuti D., Arulampalam M.S. Performance Bounds and Comparison of Nonlinear Filters for Tracking a Ballistic Object on Re-entry // IEЕE Proc. Radar, Sonar and Navigation. 2003. V. 150(2). Pp. 65—70.
12. Дмитриевский А.А., Лысенко Л.Н. Внешняя баллистика. М.: Машиностроение, 2005.
13. Горицкий Ю.А., Тигетов Д.Г., Ануфриев А.М. Двумерная модель для оценки эффективности угловых измерений по эллиптическим орбитам // Известия РАН. Серия «Теория и системы управления». 2021. № 2. С. 14—24.
14. Горицкий Ю.А., Захарова А.И. Оценка потенциальной точности некоторых параметров орбит по угловым измерениям: двумерная модель // Вестник МЭИ. 2022. № 5. С. 133—144.
15. Лавров В.В. и др. Алгоритм оценки орбитальных параметров по совокупности угловых измерений // Тенденции развития науки и образования. 2021. № 80(3). С. 120—129.
16. Миронов В.И., Миронов Ю.В., Хегай Д.К. Оптимальное определение орбиты космических объектов по угловым измерениям наземных оптико-электронных станций // Труды Санкт-Петербургского института информатики и автоматизации РАН. 2019. Вып. 18. Т. 5. С. 1239—1263.
---
Для цитирования: Горицкий Ю.А., Захарова А.И., Шевченко О.В. О точности определения параметров падения по угловым наблюдениям: рекуррентная оценка гиперболы // Вестник МЭИ. 2025. № 4. С. 167—178. DOI: 10.24160/1993-6982-2025-4-167-178
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Chang C.B. Optimal State Estimation of Ballistic Trajectories with Angle-only Measurements. Massachusetts: MIT Lincoln Laboratory, 1979.
2. Chang C.B., Tabaczynski J. Application of State Estimation to Target Tracking. IEEE Trans. Automatic Control. 1984;29(2):98—109.
3. Savrasov Yu.S. Algoritmy i Programmy v Radiolokatsii. M.: Radio i Svyaz', 1985. (in Russian).
4. Kolessa A.E., Pruglo A.V., Ravdin S.S. Vosstanovlenie Orbit po Uglovym Izmereniyam. Radiotekhnika. 2005;10:1—13. (in Russian).
5. Kolessa A.E. Rekurrentnye Algoritmy Fil'tratsii dlya Nekotorykh Sistem s Nelineynostyami Kusochno-lineynogo Tipa. Avtomatika i Telemekhanika. 1986;4:48—55. (in Russian).
6. Kolessa A.E. Nekotorye Prikladnye Voprosy Kusochno-lineynoy fil'tratsii. Avtomatika i Telemekhanika. 1986;5:61—69. (in Russian).
7. Bulychev, V.Yu., Bulychev Yu.G., Ivakina S.S. Passivnaya Lokatsiya na Osnove Uglovykh i Moshchnostnykh Izmereniy Sistemy Pelengatorov. Izvestiya RAN. Seriya «Teoriya i sistemy upravleniya». 2014;1:65—73. (in Russian).
8. Bulychev V.Yu. i dr. Uglomerno-energeticheskiy Metod Nestatsionarnoy Passivnoy Lokatsii na Baze Odnopozitsionnoy Sistemy. Izvestiya RAN. Seriya «Teoriya i sistemy upravleniya». 2015;5:122—136. (in Russian).
9. Farina A., Benvenuti D., Ristic B. Tracking a Ballistic Target: Comparison of Several Nonlinear Filters. IEEE Trans. Aerospace and Electronic Systems. 2002; 38(3):854—867.
10. Farina A., Ristic B., Timmoneri L. Cramer-Rao Bound for Nonlinear Filtering with Pd < 1 and Its Application to Target Tracking. IEEE Trans. Signal Proc. 2002;50(8):1916—1924.
11. Ristic B., Farina A., Benvenuti D., Arulampalam M.S. Performance Bounds and Comparison of Nonlinear Filters for Tracking a Ballistic Object on Re-entry. IEEE Proc. Radar, Sonar and Navigation. 2003;150(2):Pp. 65—70.
12. Dmitrievskiy A.A., Lysenko L.N. Vneshnyaya Ballistika. M.: Mashinostroenie, 2005. (in Russian).
13. Goritskiy Yu.A., Tigetov D.G., Anufriev A.M. Dvumernaya Model' dlya Otsenki Effektivnosti Uglovykh Izmereniy po Ellipticheskim Orbitam. Izvestiya RAN. Seriya «Teoriya i Sistemy Upravleniya». 2021;2:14—24. (in Russian).
14. Goritskiy Yu.A., Zakharova A.I. Otsenka Potentsial'noy Tochnosti Nekotorykh Parametrov Orbit po Uglovym Izmereniyam: Dvumernaya Model'. Vestnik MEI. 2022;5:133—144. (in Russian).
15. Lavrov V.V. i dr. Algoritm Otsenki Orbital'nykh Parametrov po Sovokupnosti Uglovykh Izmereniy. Tendentsii Razvitiya Nauki i Obrazovaniya. 2021;80(3):120—129. (in Russian).
16. Mironov V.I., Mironov Yu.V., Khegay D.K. Optimal'noe Opredelenie Orbity Kosmicheskikh Ob'ektov po Uglovym Izmereniyam Nazemnykh Optiko-elektronnykh Stantsiy. Trudy Sankt-Peterburgskogo Instituta Informatiki i Avtomatizatsii RAN. 2019;18;5:1239—1263. (in Russian)
---
For citation: Goritskiy Yu.А., Zakharova А.I., Shevchenko О.V. On the Accuracy of Determining Incident Parameters by Angular Observations: Recurrent Hyperbola Estimate. Bulletin of MPEI. 2025;4:167—178. (in Russian). DOI: 10.24160/1993-6982-2025-4-167-178
---
Conflict of interests: the authors declare no conflict of interest

Published

2025-06-24

Issue

Section

Mathematical Modeling, Numerical Methods and Program Complexes (Technical Sciences) (1.2.2)