Development of an Automatic Power Supply Restoration System in Distributed Generation Networks
DOI:
https://doi.org/10.24160/1993-6982-2025-5-11-19Keywords:
distributed generation, microgrid, power restorationAbstract
A tendency toward decreasing the power system inertia caused by a growth in the share of renewable energy sources, taken together with possible unavailability of communication channels, generates the need to develop new approaches to implementing algorithms for emergency control of devices in networks with distributed generation. An algorithm for automatically restoring power supply in such networks is proposed, which relies on local measurements and does not require high-speed communication channels. The algorithm has been validated in an RTDS real-time simulator using a 10.5 kV network model. Two scenarios for checking the algorithm performance were considered: a transition of the network to an island mode resulted from the trip of the main circuit breaker, and a short circuit fault on an outgoing feeder with both successful and unsuccessful automatic reclosing. In the first scenario, the mean time taken to fully restore the power supply was 0.322 s, and in the second scenario this time was equal to 3.637 s in the case of a self-clearing short circuit fault. The simulation results have confirmed the algorithm’s effectiveness in various network operation modes, due to which it holds promise for use in microgrids located in remote areas with minimal operational staff.
References
2. Энергетика и промышленность России [Офиц. сайт] https://www.eprussia.ru/news/base/2024/3005429.htm (дата обращения 01.08.2025).
3. IRENA. Renewable Capacity Statistics 2025 [Электрон. ресурс] https://www.irena.org/Publications/2025/Mar/Renewable-Capacity-Statistics-2025 (дата обращения 01.09.2025).
4. IEA. Renewables 2024: Analysis and Forecasts to 2030 [Электрон. ресурс] https://www.iea.org/reports/renewables-2024 (дата обращения 01.09.2025).
5. Холкин Д. Активные энергетические комплексы — первый шаг к промышленным микрогридам в России [Электрон. ресурс] http://www.ntc-msk.ru/assets/upload/testimonials/Doklad_AEK_2020.pdf (дата обращения 01.09.2025).
6. Березовский П.К. Нормативно-техническое регулирование интеграции ИРГ (включая ВИЭ) в энергосистему // Материалы совместного заседания секций НТС ЕЭС [Электрон. ресурс] https://nts-ees.ru/sites/default/files/protokol_nts_10-07-2015.pdf (дата обращения 01.09.2025).
7. Fang J., Li X., Tang Y., Li H. Design of Virtual Synchronous Generators with Enhanced Frequency Regulation and Reduced Voltage Distortions // Proc. IEEE Appl. Power Electronics Conf. and Exposition (APEC). San Antonio, 2018. Pp. 1412—1419.
8. Long-term Reliability Assessment 2024 [Электрон. ресурс] https://www.electric.coop/wp-content/uploads/2024/12/NERC_Long-Term-Reliability-Assessment_2024.pdf (дата обращения 01.09.2025).
9. Quick Reference Guide: Distributed Energy Resources (DER) Activities [Электрон. ресурс] https://www.nerc.com/comm/RSTC_Reliability_Guidelines/Quick_Reference_Guide_DER_Activities.pdf (дата обращения 01.09.2025).
10. Lauby M. Reliability and the Future of the Electricity Grid: Remarks at FERC Reliability Technical Conference [Электрон. ресурс] https://www.ferc.gov/sites/default/files/2020-08/Lauby-NERC_0.pdf (дата обращения 01.09.2025).
11. IEEE Std. 1547—2018. IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces.
12. IEEE Std. 2030.7—2017. IEEE Standard for the Specification of Microgrid Controllers.
13. IEEE Std. 1547.2—2023. IEEE Application Guide for IEEE Std. 1547—2018.
14. Вайнштейн Р.А., Коломиец Н.В., Шестакова В.В. Математические модели элементов электроэнергетических систем в расчётах установившихся режимов и переходных процессов. Томск: Изд-во ТПУ, 2010.
15. Hong Junho, Ishchenko D., Kondabathini A. Implementation of Resilient Self-healing Microgrids with IEC 61850 — Based Communications // Energies. 2021. V. 14(3). P. 547.
16. IEC 61850-7-420:2021. Communication Networks and Systems for Power Utility Automation — Part 7-420: DER and Distribution Automation Logical Nodes.
17. Abrahamsen F.E., Ai Y., Cheffena M. Communication Technologies for Smart Grid: A Comprehensive Survey // Sensors. 2021. V. 21(23). P. 8087.
18. Yazdani A., Iravani R.. Microgrid Restoration after Major Faults in Main Grid with Automatic and Constant Time Switching // Intern. J. Intelligent Systems and Appl. 2013. V. 10. Pp. 50—58
19. Виноградов А.В., Семенов А.Е., Синяков А.Н. Анализ времени восстановления электроснабжения сельских потребителей при отказах в линиях электропередачи // Инновации в АПК: проблемы и перспективы. 2017. № 1(13). С. 12—22.
20. СТО 34.01-2.2-033.1—2017. Линейное коммутационное оборудование 6 — 35 кВ — секционирующие пункты (реклоузеры). Т. 1.2. Секционирующие пункты (реклоузеры) Кн. 1.2.1. Реклоузеры АО «ГК «Таврида Электрик».
---
Для цитирования: Энтентеев А.Р., Волошин А.А. Разработка системы автоматического восстановления энергоснабжения в сетях с распределенной генерацией // Вестник МЭИ. 2025. № 5. С. 11—19. DOI: 10.24160/1993-6982-2025-5-11-19
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Reuters [Ofits. Sayt] https://www.reuters.com/sustainability/climate-energy/global-renewable-power-capacity-falls-short-targets-despite-record-growth-last-2025-03-26 (Data Obrashcheniya 01.09.2025).
2. Energetika i Promyshlennost' Rossii [Ofits. Sayt] https://www.eprussia.ru/news/base/2024/3005429.htm (Data Obrashcheniya 01.08.2025). (in Russian).
3. IRENA. Renewable Capacity Statistics 2025 [Elektron. Resurs] https://www.irena.org/Publications/2025/Mar/Renewable-Capacity-Statistics-2025 (Data Obrashcheniya 01.09.2025).
4. IEA. Renewables 2024: Analysis and Forecasts to 2030 [Elektron. Resurs] https://www.iea.org/reports/renewables-2024 (Data Obrashcheniya 01.09.2025).
5. Kholkin D. Aktivnye Energeticheskie Kompleksy — Pervyy Shag k Promyshlennym Mikrogridam v Rossii [Elektron. Resurs] http://www.ntc-msk.ru/assets/upload/testimonials/Doklad_AEK_2020.pdf (Data Obrashcheniya 01.09.2025). (in Russian).
6. Berezovskiy P.K. Normativno-tekhnicheskoe Regulirovanie Integratsii IRG (Vklyuchaya VIE) v Energosistemu. Materialy Sovmestnogo Zasedaniya Sektsiy NTS EES [Elektron. Resurs] https://nts-ees.ru/sites/default/files/protokol_nts_10-07-2015.pdf (Data Obrashcheniya 01.09.2025). (in Russian).
7. Fang J., Li X., Tang Y., Li H. Design of Virtual Synchronous Generators with Enhanced Frequency Regulation and Reduced Voltage Distortions. Proc. IEEE Appl. Power Electronics Conf. and Exposition (APEC). San Antonio, 2018:1412—1419.
8. Long-term Reliability Assessment 2024 [Elektron. Resurs] https://www.electric.coop/wp-content/uploads/2024/12/NERC_Long-Term-Reliability-Assessment_2024.pdf (Data Obrashcheniya 01.09.2025).
9. Quick Reference Guide: Distributed Energy Resources (DER) Activities [Elektron. Resurs] https://www.nerc.com/comm/RSTC_Reliability_Guidelines/Quick_Reference_Guide_DER_Activities.pdf (Data Obrashcheniya 01.09.2025).
10. Lauby M. Reliability and the Future of the Electricity Grid: Remarks at FERC Reliability Technical Conference [Elektron. Resurs] https://www.ferc.gov/sites/default/files/2020-08/Lauby-NERC_0.pdf (Data Obrashcheniya 01.09.2025).
11. IEEE Std. 1547—2018. IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces.
12. IEEE Std. 2030.7—2017. IEEE Standard for the Specification of Microgrid Controllers.
13. IEEE Std. 1547.2—2023. IEEE Application Guide for IEEE Std. 1547—2018.
14. Vaynshteyn R.A., Kolomiets N.V., Shestakova V.V. Matematicheskie Modeli Elementov Elektroenergeticheskikh Sistem v Raschetakh Ustanovivshikhsya Rezhimov i Perekhodnykh Protsessov. Tomsk: Izd-vo TPU, 2010. (in Russian).
15. Hong Junho, Ishchenko D., Kondabathini A. Implementation of Resilient Self-healing Microgrids with IEC 61850 — Based Communications. Energies. 2021;14(3):547.
16. IEC 61850-7-420:2021. Communication Networks and Systems for Power Utility Automation — Part 7-420: DER and Distribution Automation Logical Nodes.
17. Abrahamsen F.E., Ai Y., Cheffena M. Communication Technologies for Smart Grid: A Comprehensive Survey. Sensors. 2021;21(23):8087.
18. Yazdani A., Iravani R.. Microgrid Restoration after Major Faults in Main Grid with Automatic and Constant Time Switching. Intern. J. Intelligent Systems and Appl. 2013;10:50—58
19. Vinogradov A.V., Semenov A.E., Sinyakov A.N. Analiz Vremeni Vosstanovleniya Elektrosnabzheniya Sel'skikh Potrebiteley pri Otkazakh v Liniyakh Elektroperedachi. Innovatsii v APK: Problemy i Perspektivy. 2017;1(13):12—22. (in Russian).
20. STO 34.01-2.2-033.1—2017. Lineynoe Kommutatsionnoe Oborudovanie 6 — 35 kV — Sektsioniruyushchie Punkty (Reklouzery). T. 1.2. Sektsioniruyushchie Punkty (Reklouzery) Kn. 1.2.1. Reklouzery AO «GK «Tavrida Elektrik». (in Russian)
---
For citation: Ententeev A.R., Voloshin A.A. Development of an Automatic Power Supply Restoration System in Distributed Generation Networks. Bulletin of MPEI. 2025;5:11—19. (in Russian). DOI: 10.24160/1993-6982-2025-5-11-19
---
Conflict of interests: the authors declare no conflict of interest