Induction-thermal Vacuum Sputtering of Molybdenum Ring Targets Onto Alumina Substrates

Authors

  • Владимир [Vladimir] Александрович [A.] Кошуро [Koshuro]
  • Марина [Marina] Алексеевна [A.] Фомина [Fomina]
  • Александр [Aleksandr] Александрович [A.] Фомин [Fomin]

DOI:

https://doi.org/10.24160/1993-6982-2025-5-31-40

Keywords:

induction-thermal vacuum sputtering, induction-thermal vacuum spraying, numerical simulation, inductor current, ring target, molybdenum, alumina ceramics

Abstract

The thermal processes associated with induction-thermal vacuum sputtering (ITVS) of ring molybdenum targets are studied. The effect the operating current and the process duration have on the thickness and structure of molybdenum layers deposited by spraying on aluminum oxide plates is determined. An ITVS process numerical model for the “inductor–ring target–sample” system was proposed, using which the temperature field distribution pattern in the sputtered target was determined depending on the inductor current in the range from 1000 to 2500 A and the computer experiment duration up to 600 s. It has been found that by using the above-mentioned modes, molybdenum targets can be heated to a sputtering temperature of 1860–2320°C. In the experimental studies, thermal sputtering of a ring target was carried out using an induction heating unit, special accessories, a two-turn copper inductor at a pressure in the working chamber of 0.6–3.5 Torr, operating frequency f ≈ 45 kHz, and operating current IO = 1000–1330 A. The process duration was 300–1200 s. It has been shown that the exposure time and the operating current have a directly proportional effect on the coating thickness, with an increase in the operating current having a more intense effect. The thinnest molybdenum layers (h = 2.3±0.3 μm) are produced at the operating current values IO = 1100 A and exposure time t = 300 s. The maximum thickness of the molybdenum coating is about 22±4 μm at a current of 1300 A and an exposure time of 1200 s. The obtained results provide a wider insight into the thermal sputtering of refractory metals and can be used in development of methods for applying molybdenum layers, including those onto ceramic products for various purposes.

Author Biographies

Владимир [Vladimir] Александрович [A.] Кошуро [Koshuro]

Ph.D. (Techn.), Assistant Professor of Materials Science and Biomedical Engineering Dept., Senior Researcher at the Laboratory of Induction, Plasma and Laser Material Processing Technologies, Yuri Gagarin State Technical University of Saratov, e-mail: dimirion@mail.ru

Марина [Marina] Алексеевна [A.] Фомина [Fomina]

Ph.D.-student of Materials Science and Biomedical Engineering Dept., Research Fellow at the Laboratory of Induction, Plasma and Laser Material Processing Technologies, Yuri Gagarin State Technical University of Saratov, e-mail: lab-sm@mail.ru

Александр [Aleksandr] Александрович [A.] Фомин [Fomin]

Dr.Sci. (Techn.), Assistant Professor, Head of Materials Science and Biomedical Engineering Dept., Leading Researcher at the Laboratory of Induction, Plasma and Laser Material Processing Technologies, Yuri Gagarin State Technical University of Saratov, e-mail: afominalex@gmail.com

References

1. Schiller S. e. a. Metallization of Ceramics for Electronic Components By Magnetron-plasmatron Coating // Thin Solid Films. 1980. V. 72(2). Pp. 313—326.
2. Leinenbach C., Weyrich N., Elsener H.R., Gamez G. Al2O3–Al2O3 and Al2O3–Ti Solder Joints — Influence of Ceramic Metallization and Thermal Pretreatment on Joint Properties // Intern. J. Appl. Ceramic Technol. 2012. V. 9(4). Pp. 751—763.
3. Takahashi M. e. a. Development of Mo Metallization Process of AIN Ceramic Surfaces // Electronics and Communications in Japan (Pt. II: Electronics). 1989. V. 72(9). Pp. 86—95.
4. Rane G.K. e. a. Tungsten/molybdenum Thin Films for Application as Interdigital Transducers on High Temperature Stable Piezoelectric Substrates La3Ga5SiO14 and Ca3TaGa3Si2O14 // Materials Sci. and Eng: B. 2015. V. 202. Pp. 31—38.
5. Ohara J. e. a. Metallization on Piezoelectric Ceramics Surfaces by Synchrotron Radiation Irradiation // J. Electron Spectroscopy and Related Phenomena. 1996. V. 80. Pp. 81—84.
6. Dai X. e. a. Molybdenum thin Films with Low Resistivity and Superior Adhesion Deposited by Radio-frequency Magnetron Sputtering at Elevated Temperature // Thin Solid Films. 2014. V. 567. Pp. 64—71.
7. Леванцевич М.А., Максимченко Н.Н., Пилипчук Е.В. Анализ способов металлизации керамических подложек изделий микроэлектроники // Актуальные вопросы машиноведения. 2023. Т. 12. С. 283—286.
8. Xin C., Liu W., Li N., Yan J., Shi S. Metallization of Al2O3 Ceramic by Magnetron Sputtering Ti/Mo Bilayer Thin Films for Robust Brazing to Kovar Alloy // Ceramics Intern. J. 2016. V. 42(8). Pp. 9599—9604.
9. Straumal B.B., Vershinin N.F., Asrian A.A., Rabkin E., Kroeger R. Nanostructured Vacuum Arc Deposited Titanium Coatings // Materials Phys. and Mechanics. 2002. V. 5(1). Pp. 39—42.
10. Olson D.L. Welding, Brazing, and Soldering. N.-Y.: American Society for Metals, 1993. V. 6.
11. Koshuro V., Fomina M., Zakharevich A., Fomin A. Superhard Ta–O–N Coatings Produced on Titanium Using Induction Physical Vapor Deposition // Ceramics Intern. J. 2022. V. 48(13). Pp. 19467—19483.
12. Кошуро В.А., Фомин А.А. Формирование молибденсодержащих слоев индукционно-термическим вакуумным распылением // Современные методы и технологии создания и обработки материалов: Сб. научных трудов. Кн. 2. Технологии и оборудование механической и физико-технической обработки. Минск: ФТИ НАН Беларуси, 2023. С. 114—122.
---
Для цитирования: Кошуро В.А., Фомина М.А., Фомин А.А. Индукционно-термическое вакуумное распыление кольцевых мишеней из молибдена на алюмооксидные подложки // Вестник МЭИ. 2025. № 5. С. 31—40. DOI: 10.24160/1993-6982-2025-5-31-40
---
Работа выполнена при поддержке Российского научного фонда (грант № 25-29-00010), https://rscf.ru/project/25-29-00010/
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Schiller S. e. a. Metallization of Ceramics for Electronic Components By Magnetron-plasmatron Coating. Thin Solid Films. 1980;72(2):313—326.
2. Leinenbach C., Weyrich N., Elsener H.R., Gamez G. Al2O3–Al2O3 and Al2O3–Ti Solder Joints — Influence of Ceramic Metallization and Thermal Pretreatment on Joint Properties. Intern. J. Appl. Ceramic Technol. 2012;9(4):751—763.
3. Takahashi M. e. a. Development of Mo Metallization Process of AIN Ceramic Surfaces. Electronics and Communications in Japan (Pt. II: Electronics). 1989;72(9):86—95.
4. Rane G.K. e. a. Tungsten/molybdenum Thin Films for Application as Interdigital Transducers on High Temperature Stable Piezoelectric Substrates La3Ga5SiO14 and Ca3TaGa3Si2O14. Materials Sci. and Eng: B. 2015;202:31—38.
5. Ohara J. e. a. Metallization on Piezoelectric Ceramics Surfaces by Synchrotron Radiation Irradiation. J. Electron Spectroscopy and Related Phenomena. 1996;80:81—84.
6. Dai X. e. a. Molybdenum thin Films with Low Resistivity and Superior Adhesion Deposited by Radio-frequency Magnetron Sputtering at Elevated Temperature. Thin Solid Films. 2014;567:64—71.
7. Levantsevich M.A., Maksimchenko N.N., Pilipchuk E.V. Analiz Sposobov Metallizatsii Keramicheskikh Podlozhek Izdeliy Mikroelektroniki. Aktual'nye Voprosy Mashinovedeniya. 2023;12:283—286. (in Russian).
8. Xin C., Liu W., Li N., Yan J., Shi S. Metallization of Al2O3 Ceramic by Magnetron Sputtering Ti/Mo Bilayer Thin Films for Robust Brazing to Kovar Alloy. Ceramics Intern. J. 2016;42(8):9599—9604.
9. Straumal B.B., Vershinin N.F., Asrian A.A., Rabkin E., Kroeger R. Nanostructured Vacuum Arc Deposited Titanium Coatings. Materials Phys. and Mechanics. 2002;5(1):39—42.
10. Olson D.L. Welding, Brazing, and Soldering. N.-Y.: American Society for Metals, 1993;6.
11. Koshuro V., Fomina M., Zakharevich A., Fomin A. Superhard Ta–O–N Coatings Produced on Titanium Using Induction Physical Vapor Deposition. Ceramics Intern. J. 2022;48(13):19467—19483.
12. Koshuro V.A., Fomin A.A. Formirovanie Molibdensoderzhashchikh Sloev Induktsionno-termicheskim Vakuumnym Raspyleniem. Sovremennye Metody i Tekhnologii Sozdaniya i Obrabotki Materialov: Sb. Nauchnykh Trudov. Kn. 2. Tekhnologii i Oborudovanie Mekhanicheskoy i Fiziko-tekhnicheskoy Obrabotki. Minsk: FTI NAN Belarusi, 2023:114—122. (in Russian)
---
For citation: Koshuro V.A., Fomina M.A., Fomin A.A. Induction-Thermal Vacuum Sputtering of Molybdenum Ring Targets Onto Alumina Substrates. Bulletin of MPEI. 2025;5:31—40. (in Russian). DOI: 10.24160/1993-6982-2025-5-31-40
---
The Work was Carried Out Russian Science Foundation (Grant No. 25-29-00010), https://rscf.ru/project/25-29-00010/
---
Conflict of interests: the authors declare no conflict of interest

Published

2025-06-24

Issue

Section

Electrotechnology and Electrophysics (Technical Sciences) (2.4.4)