Simulation of the KVGM-10 Boiler and the RGMG-10 Burner, when Operating on a Methane-hydrogen Mixture
DOI:
https://doi.org/10.24160/1993-6982-2025-5-51-58Keywords:
hydrogen technologies, methane-hydrogen mixtures, burner devices, gas distribution, gas consumption, thermal power engineering, hydrogen boiler housesAbstract
In recent years, the power engineering community of the leading countries with well-developed economy and energy sectors has focused increased attention on matters concerned with the most environmentally friendly use of existing energy capacities. To solve this problem, it is necessary to modernize the current energy potential of one or another country (and, collectively, their common power system) and develop new principles and technologies for generating, transporting, and consuming energy in its various forms. Hydrogen energy and its derivatives is a topic that is most actively discussed and gaining popularity in different countries, the Russian Federation included. The main objective of hydrogen energy is to use hydrogen in the form of end product as fuel in the energy sector, thereby supporting the climate agenda to reduce the carbon footprint from the impact of the energy sector on the environment. The most promising and discussed vector of national hydrogen power engineering in Russia is the introduction of methane-hydrogen mixtures into the gas transportation sector, namely, the admixing of hydrogen into transported natural gas in a certain concentration. The purpose of the study is to analyze the features pertinent to the operation of Russian gas transportation and gas distribution systems in the case of their possible transition to methane-hydrogen technologies. In carrying out the study, systems analysis and mathematical modeling methods were used. In particular, simulation of the RGMG-10 burner in the ANSYS environment is described. The simulation results have shown that this type of equipment will require certain modification of its design characteristics in the case of its operation on methane-hydrogen mixtures. The furnace unit of a typical boiler installation was simulated in the Aspen Plus environment. The simulation results have shown that during the operation on methane-hydrogen mixtures, a positive tendency toward reducing CO2 emissions is observed; however, there is also an increase in the concentration of NOx compounds in the exhaust gases. Research in this field is promising and makes an important contribution to the overall scientific and technical background in the developing segment of Russian hydrogen energy.
References
2. Kyoto Protocol to the United Nations Framework Convention on Climate Change. Done at Kyoto This Eleventh Day of December One Thousand Nine Hundred and Ninety-seven. [Электрон. ресурс] https://unfccc.int/resource/docs/convkp/kpeng.html (дата обращения 05.07.2025).
3. Paris Agreement Done at Paris This Twelfth Day of December Two Thousand and Fifteen. [Электрон. ресурс] https://docviewer.yandex.ru/?tm=1696644127&tld=ru&lang=en&name=english_paris_agreement.pdf.https://unfccc.int/resource/docs/convkp/kpeng.html (дата обращения 22.07.2025).
4. Указ Президента Российской Федерации № 666 от 04 ноября 2020 г. «О сокращении выбросов парниковых газов».
5. Стенограмма пленарного заседания Международного форума «Российская энергетическая неделя». [Электрон. ресурс] http://prezident.org/tekst/stenogramma-plenarnogozasedanija-mezhdunarodnogo-foruma-rossiiskaja-energeticheskaja-nedelja-12-10-.html (дата обращения 02.08.2024).
6. Yin Z.C., Yang G., Liu H., Ma Q., Hao J. Research Status and Prospect Analysis of Key Technologies for Hydrogen Energy Storage and Transportation // Mod. Chem. Ind. 2021. V. 41. Pp. 53—57.
7. Li X.L., Tang L.Y. Research Progress on Application of Hydrogen-mixed Natural Gas in Terminal Pipe Network // Oil Gas Storage Transp. 2022. V. 41. Pp 381—390.
8. Qiu Y., Zhou S.Y., Gu W., Pan G.S., Chen X.G. Application Prospect Analysis of Hydrogen Enriched Compressed Natural Gas Technologies Under the Target of Carbon Emission Peak and Carbon Neutrality // Proc. Chinese Soc. Electrical Eng. 2022. V. 42. 1301—1321.
9. Xu L.B. Research on the Prospect and Development Strategy of Hydrogen Energy in China // Clean Coal Technol. 2022. V. 28. Pp. 1—10.
10. US 5139002A. Special Purpose Blends of Hydrogen and Natural Gas.
11. Cui Z.X. e. a. Pressure Drop Rate Threshold Setting of Block Valves in Hydrogen-blended Natural Gas Pipelines // Oil Gas Storage Transp. 2021. V. 40(1313). Pp. 1293—1298.
12. Troiano A.R. The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals: (1959 Edward De Mille Campbell Memorial Lecture // Metallography, Microstructure and Analysis. 2026. V. 5. Pp. 557—569.
13. Zhang J.X. e. a. Research Progress on Hydrogen Embrittlement Behavior of Pipeline Steel in the Environment of Hydrogen-blended Natural Gas // Surface Technol. 2022. Pp. 1—11.
14. Song P.F. Impact of Hydrogen into Natural Gas Grid and Technical Feasibility Analysis // Mod. Chem. Ind. 2020. V. 40. Pp. 5—10.
15. Zhou J. Characteristic Analysis of Mixing Hydrogen in Natural Gas Pipeline. Fushun: LiaoNing Petrochemical University, 2020.
16. Zhong B., Zhang X.X., Zhang B., Peng S.P. Industrial Development of Hydrogen Blending in Natural Gas Pipelines in China // Chinese J. Eng. Sci. 2022. V. 24(3). Pp. 100—107.
17. Li Z.F., Sun M.Y. Analysis of the Influence of Natural Gas Containing Hydrogen on Pipeline Internal Corrosion // Proc. China Gas Operations and Safety Seminar, 2012.
18. Lin M. The Research of Thick-walled Pipe Inspection and Evaluation of Hydrogen Damage. Qingdao: Qingdao University of Sci. and Technol., 2010.
19. Yu Z.L. e. a. Natural Gas Hydrogen Mixing Pipeline Transportation and Terminal Application // Mechanical. Eng. 2022. Pp. 491—502.
20. Wang H.J. e. a. Application Status and Analysis of Technology for Blending Hydrogen Into Natural Gas // Gas and Heat. 2021. V. 41(10). Pp. 12—15.
---
Для цитирования: Дронов С.А., Федюхин А.В., Семин Д.В., Ситас В.И. Моделирование котла КВГМ-10 и горелки РГМГ-10 при работе на метано-водородной смеси // Вестник МЭИ. 2025. № 5. С. 51—58. DOI: 10.24160/1993-6982-2025-5-51-58
---
Работа выполнена в рамках ПНИ «Приоритет 2030: Технологии будущего» на период 2022 — 2024 гг. (ПНИ 2022/24). Заказчик: ФГБОУ ВО «НИУ «МЭИ». Договор № ПНИ/2022/24-16 от 01.11.2022, выполненной кафедрой ПТС
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Multilateral. Montreal Protocol on Substances that Deplete the Ozone/Layer (with Annex). Concluded at Montreal on 16 September 1987 [Elektron. Resurs] https://docviewer.yandex.ru/?tm=1696644677&tld=ru&lang=en&name=volume-1522-i-26369-english.pdf (Data Obrashcheniya 17.08.2025).
2. Kyoto Protocol to the United Nations Framework Convention on Climate Change. Done at Kyoto This Eleventh Day of December One Thousand Nine Hundred and Ninety-seven. [Elektron. Resurs] https://unfccc.int/resource/docs/convkp/kpeng.html (Data Obrashcheniya 05.07.2025).
3. Paris Agreement Done at Paris This Twelfth Day of December Two Thousand and Fifteen. [Elektron. Resurs] https://docviewer.yandex.ru/?tm=1696644127&tld=ru&lang=en&name=english_paris_agreement.pdf.https://unfccc.int/resource/docs/convkp/kpeng.html (Data Obrashcheniya 22.07.2025).
4. Ukaz Prezidenta Rossiyskoy Federatsii № 666 ot 04 Noyabrya 2020 g. «O Sokrashchenii Vybrosov Parnikovykh Gazov». (in Russian).
5. Stenogramma Plenarnogo Zasedaniya Mezhdunarodnogo Foruma «Rossiyskaya Energeticheskaya Nedelya» [Elektron. Resurs] http://prezident.org/tekst/stenogramma-plenarnogozasedanija-mezhdunarodnogo-foruma-rossiiskaja-energeticheskaja-nedelja-12-10-.html (Data Obrashcheniya 02.08.2024). (in Russian).
6. Yin Z.C., Yang G., Liu H., Ma Q., Hao J. Research Status and Prospect Analysis of Key Technologies for Hydrogen Energy Storage and Transportation. Mod. Chem. Ind. 2021;41:53—57.
7. Li X.L., Tang L.Y. Research Progress on Application of Hydrogen-mixed Natural Gas in Terminal Pipe Network. Oil Gas Storage Transp. 2022;41. Pp 381—390.
8. Qiu Y., Zhou S.Y., Gu W., Pan G.S., Chen X.G. Application Prospect Analysis of Hydrogen Enriched Compressed Natural Gas Technologies Under the Target of Carbon Emission Peak and Carbon Neutrality. Proc. Chinese Soc. Electrical Eng. 2022;42. 1301—1321.
9. Xu L.B. Research on the Prospect and Development Strategy of Hydrogen Energy in China. Clean Coal Technol. 2022;28:1—10.
10. US 5139002A. Special Purpose Blends of Hydrogen and Natural Gas.
11. Cui Z.X. e. a. Pressure Drop Rate Threshold Setting of Block Valves in Hydrogen-blended Natural Gas Pipelines. Oil Gas Storage Transp. 2021;40(1313):1293—1298.
12. Troiano A.R. The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals: (1959 Edward De Mille Campbell Memorial Lecture. Metallography, Microstructure and Analysis. 2026;5:557—569.
13. Zhang J.X. e. a. Research Progress on Hydrogen Embrittlement Behavior of Pipeline Steel in the Environment of Hydrogen-blended Natural Gas. Surface Technol. 2022:1—11.
14. Song P.F. Impact of Hydrogen into Natural Gas Grid and Technical Feasibility Analysis. Mod. Chem. Ind. 2020;40:5—10.
15. Zhou J. Characteristic Analysis of Mixing Hydrogen in Natural Gas Pipeline. Fushun: LiaoNing Petrochemical University, 2020.
16. Zhong B., Zhang X.X., Zhang B., Peng S.P. Industrial Development of Hydrogen Blending in Natural Gas Pipelines in China. Chinese J. Eng. Sci. 2022;24(3):100—107.
17. Li Z.F., Sun M.Y. Analysis of the Influence of Natural Gas Containing Hydrogen on Pipeline Internal Corrosion. Proc. China Gas Operations and Safety Seminar, 2012.
18. Lin M. The Research of Thick-walled Pipe Inspection and Evaluation of Hydrogen Damage. Qingdao: Qingdao University of Sci. and Technol., 2010.
19. Yu Z.L. e. a. Natural Gas Hydrogen Mixing Pipeline Transportation and Terminal Application. Mechanical. Eng. 2022:491—502.
20. Wang H.J. e. a. Application Status and Analysis of Technology for Blending Hydrogen Into Natural Gas. Gas and Heat. 2021;41(10):12—15
---
For citation: Dronov S.A., Fedyukhin F.V., Semin D.V., Sitas V.I. Simulation of the KVGM-10 Boiler and the RGMG-10 Burner, when Operating on a Methane-hydrogen Mixture. Bulletin of MPEI. 2025;5:51—58. (in Russian). DOI: 10.24160/1993-6982-2025-5-51-58
---
The Work was Carried Out within the Framework of the Priority 2030 Research Program for the Period 2022 — 2024 (Priority 2022/24). Customer: FGBOU VO «NRU «MPEI». Contract No. Priority 2022/24-16 dated November 1, 2022, executed by the Department of Technical Systems
---
Conflict of interests: the authors declare no conflict of interest