Development and Assessment of the Applicability of a 1D Procedure for Analyzing the Performance of a Radial Turboexpander Operating on Mixed Working Fluids

Authors

  • Александр [Aleksandr] Андреевич [A.] Сидоров [Sidorov]
  • Арсений [Arseniy] Константинович [K.] Ястребов [Yastrebov]

DOI:

https://doi.org/10.24160/1993-6982-2025-5-72-82

Keywords:

turboexpander, CFD, calculation procedure, velocity pattern, gas mixtures, thermal gas dynamics

Abstract

The article addresses the development and assessment of the applicability of a quasi 1D design methodology for analyzing the performance of a radial turboexpander stage operating on mixed working fluids without considering phase transitions. The applicability of the proposed methodology is assessed by comparing the results obtained using the newly developed approach with the results of CFD calculations carried out in a cyclosymmetric formulation with periodic boundary conditions. Comparison with CFD calculations is adopted in view of complexity of setting up a full-scale experiment, as well as an insufficient scope of materials available in open sources. The developed calculation procedure is based on well-known approaches, but differs from them in offering the possibility of using the equations of state of real gases, considering a mixed working fluid, as well as the transition to the direct setting of isentropic efficiencies of stage elements instead of iterative determination of flow coefficients. This made it possible to simplify the procedure without loss of accuracy. The calculation procedure and its software implementation were tested using the example of constructing the characteristics of a stage for a mixed working fluid (dry air was chosen as an example). A design calculation was carried out, and the geometric and thermal gas dynamic characteristics were determined, which were used as initial conditions for the CFD calculation. Good agreement between the two calculation methods has been obtained; the maximum difference in the characteristics is within 3%, which does not exceed the numerical method uncertainty. Velocity patterns determined using both the approaches (1D calculation and CFD application) have been constructed, the results of which are in good agreement with each other. Based on the CFD calculation results, the pressure and temperature distributions in the radial and meridional sections have been constructed, and the values along the meridional section central line are also given. The consistency of the results with the expanding process physical principles is shown. A non-uniform distribution of temperatures along the height of the guide vane and impeller channels has been revealed. Further development of the procedure is aimed at taking into account possible phase transitions (bulk condensation) in the flow path.

Author Biographies

Александр [Aleksandr] Андреевич [A.] Сидоров [Sidorov]

Ph.D. (Techn.), Assistant Professor of Low Temperatures Dept., NRU MPEI, SPIN-код: 3476-6503, AuthorID: 937249, e-mail: SidorovAAn@mpei.ru

Арсений [Arseniy] Константинович [K.] Ястребов [Yastrebov]

Ph.D. (Techn.), Assistant Professor of Low Temperatures Dept., NRU MPEI, SPIN-код: 5005-2544, AuthorID: 41201, e-mail: akyastrebov@yandex.ru

References

1. Епифанова В.И. Низкотемпературные радиальные турбодетандеры. Москва: Машиностроение, 1974.
2. Сидоров А.А., Ястребов А.К. Численное моделирование процесса детандирования в турбоагрегате расширительного типа методом конечных объемов // Теплоэнергетика. 2021. № 8. С. 17—25.
3. Hyeong Leea, Min Kima D., Suk Yangb H., Kim S. Conceptual Design of Cryogenic Turbo Expander for 10 kW Class Reverse Brayton Refrigerator // Superconductivity and Cryogenics. 2015. V. 17(3). Pp. 41—49.
4. Liu B. e. a. Simulation Study on the Flow Field of Guide Vane and Impeller of Turbo Expander // Energy Sci. Eng. 2019. V. 3. P. 1—15.
5. Gad-el-Hak I., Hussin A.E., Hamed A.M., Mahmoud N.A. 3D Numerical Modeling of Zeotropic Mixtures and Pure Working Fluids in an ORC Turbo-Expander // Intern. J. Turbomachinery Propulsion Power. 2017. V. 2(1). Pp. 29—35.
6. Morgese, G. e. a. Fast Design Procedure for Turboexpanders in Pressure Energy Recovery Applications // Energies. 2020. V. 13(14). P. 3669.
7. Тимушев С.Ф., Клименко Д.В., Фирсов В.П., Антюхов И.В. Численное моделирование пульсаций давления и нестационарных нагрузок в радиальной турбине турбодетандера // Труды МАИ. 2015. № 82. Pp. 1—22.
8. Даминов А.З., Камалов Р.Ф., Соломин И.Н. Моделирование рабочего колеса турбодетандера термоэлектрической установки, работающей по циклу Ренкина на органическом хладоне // Труды Академэнерго. 2019. № 2. Pp. 63—73.
9. Седунин В.А., Шемякинский А.С. Особенности проектирования детандер-генераторного агрегата в системе топливного газа компрессорного цеха // Вестник МГТУ им. Н.Э. Баумана. Серия «Машиностроение». 2017. № 5. С. 105—121.
10. Sachin J., Qureshi U. Computational Fluid Dynamics Analysis of Cryogenic Turboexpander // Intern. J. Advance Engineering and Research Development. 2016. V. 3(10). Pp. 23—25.
11. Свид-во о гос. регистрации программы для ЭВМ № 023680810 РФ. Программа для определения оптимальных характеристик ступени радиального турбодетандера на расчетном режиме / Сидоров А.А., Ястребов А.К.
12. Антонов А.Н. и др. Машины низкотемпературной техники. Криогенные машины и инструменты. М.: Изд-во МГТУ им. Н.Э. Баумана, 2015.
13. Давыдов А.Б., Кобулашвили А.Ш., Шерстюк А.Н. Расчет и конструирование турбодетандеров. М.: Машиностроение, 1987.
14. Redlich O., Kwong J.N.S. On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions // Chem. Rev. 1940. V. 1(44). Pp. 233—244.
15. Peng D.Y., Robinson D.B. A New Two-constant Equation of State // Industrial and Eng. Chem.: Fundamentals. 1976. V. 15. Pp. 59—64.
16. Lemmon E.W., Bell I.H., Huber M.L., McLinden M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0. Gaithersburg: National Institute of Standards and Technol., 2018.
17. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Физматлит, 2015.
18. Wilcox D.C. Formulation of the k-ω Turbulence Model Revisited // AIAA J. 2008. V. 46(11). Pp. 2823—2838.
19. John D., Anderson Jr. Computational Fluid Dynamics: the Basics with Applications. N.-Y.: McGraw-Hill, Inc., 1995.
20. Turton R.K. Principles of Turbomachinery. N.-Y.: Springer Dordrecht, 1984.
21. Gorla R.S.R., Khan A.A. Turbomachinery Design and Theory. N.-Y.: Marcel Dekker, Inc., 2003.
22. Bloch H.P., Soares C. Turboexpanders and Process Applications. Boston: Gulf Professional Publishing, 2001.
23. Giampaolo T. Gas Turbine Handbook: Principles and Practices. Lilburn: Fairmont Press, 2006.
24. Михальцев В.Е., Моляков В.Д. Теория и проектирование газовой турбины. М.: Изд-во МГТУ им. Н.Э. Баумана, 2020.
25. Трухний А. Cтационарные паровые турбины. М.: Энергоатомиздат, 1990.
---
Для цитирования: Сидоров А.А., Ястребов А.К. Разработка одномерной методики и оценка ее применимости при определении характеристик радиального турбодетандера для смесевых рабочих тел // Вестник МЭИ. 2025. № 5. С. 72—83. DOI: 10.24160/1993-6982-2025-5-72-82
---
Работа выполнена при поддержке Российского научного фонда (проект № 23-29-00540)
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Epifanova V.I. Nizkotemperaturnye Radial'nye Turbodetandery. Moskva: Mashinostroenie, 1974. (in Russian).
2. Sidorov A.A., Yastrebov A.K. Chislennoe Modelirovanie Protsessa Detandirovaniya v Turboagregate Rasshiritel'nogo Tipa Metodom Konechnykh Ob'emov. Teploenergetika. 2021;8:17—25. (in Russian).
3. Hyeong Leea, Min Kima D., Suk Yangb H., Kim S. Conceptual Design of Cryogenic Turbo Expander for 10 kW Class Reverse Brayton Refrigerator. Superconductivity and Cryogenics. 2015;17(3):41—49.
4. Liu B. e. a. Simulation Study on the Flow Field of Guide Vane and Impeller of Turbo Expander. Energy Sci. Eng. 2019;3:1—15.
5. Gad-el-Hak I., Hussin A.E., Hamed A.M., Mahmoud N.A. 3D Numerical Modeling of Zeotropic Mixtures and Pure Working Fluids in an ORC Turbo-Expander. Intern. J. Turbomachinery Propulsion Power. 2017;2(1):29—35.
6. Morgese, G. e. a. Fast Design Procedure for Turboexpanders in Pressure Energy Recovery Applications. Energies. 2020;13(14):3669.
7. Timushev S.F., Klimenko D.V., Firsov V.P., Antyukhov I.V. Chislennoe Modelirovanie Pul'satsiy Davleniya i Nestatsionarnykh Nagruzok v Radial'noy Turbine Turbodetandera. Trudy MAI. 2015;82:1—22. (in Russian).
8. Daminov A.Z., Kamalov R.F., Solomin I.N. Modelirovanie Rabochego Kolesa Turbodetandera Termoelektricheskoy Ustanovki, Rabotayushchey po Tsiklu Renkina na Organicheskom Khladone. Trudy Akademenergo. 2019;2:63—73. (in Russian).
9. Sedunin V.A., Shemyakinskiy A.S. Osobennosti Proektirovaniya Detander-Generatornogo Agregata v Sisteme Toplivnogo Gaza Kompressornogo Tsekha. Vestnik MGTU im. N.E. Baumana. Seriya «Mashinostroenie». 2017;5:105—121. (in Russian).
10. Sachin J., Qureshi U. Computational Fluid Dynamics Analysis of Cryogenic Turboexpander. Intern. J. Advance Engineering and Research Development. 2016;3(10):23—25.
11. Svid-vo o Gos. Registratsii Programmy dlya EVM № 023680810 RF. Programma dlya Opredeleniya Optimal'nykh Kharakteristik Stupeni Radial'nogo Turbodetandera na Raschetnom Rezhime. Sidorov A.A., Yastrebov A.K. (in Russian).
12. Antonov A.N. i dr. Mashiny Nizkotemperaturnoy Tekhniki. Kriogennye Mashiny i Instrumenty. M.: Izd-vo MGTU im. N.E. Baumana, 2015. (in Russian).
13. Davydov A.B., Kobulashvili A.Sh., Sherstyuk A.N. Raschet i Konstruirovanie Turbodetanderov. M.: Mashinostroenie, 1987. (in Russian).
14. Redlich O., Kwong J.N.S. On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chem. Rev. 1940;1(44):233—244.
15. Peng D.Y., Robinson D.B. A New Two-constant Equation of State. Industrial and Eng. Chem.: Fundamentals. 1976;15:59—64.
16. Lemmon E.W., Bell I.H., Huber M.L., McLinden M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0. Gaithersburg: National Institute of Standards and Technol., 2018.
17. Landau L.D., Lifshits E.M. Gidrodinamika. M.: Fizmatlit, 2015. (in Russian).
18. Wilcox D.C. Formulation of the k-ω Turbulence Model Revisited. AIAA J. 2008;46(11):2823—2838.
19. John D., Anderson Jr. Computational Fluid Dynamics: the Basics with Applications. N.-Y.: McGraw-Hill, Inc., 1995.
20. Turton R.K. Principles of Turbomachinery. N.-Y.: Springer Dordrecht, 1984.
21. Gorla R.S.R., Khan A.A. Turbomachinery Design and Theory. N.-Y.: Marcel Dekker, Inc., 2003.
22. Bloch H.P., Soares C. Turboexpanders and Process Applications. Boston: Gulf Professional Publishing, 2001.
23. Giampaolo T. Gas Turbine Handbook: Principles and Practices. Lilburn: Fairmont Press, 2006.
24. Mikhal'tsev V.E., Molyakov V.D. Teoriya i Proektirovanie Gazovoy Turbiny. M.: Izd-vo MGTU im. N.E. Baumana, 2020. (in Russian).
25. Trukhniy A. Ctatsionarnye Parovye Turbiny. M.: Energoatomizdat, 1990. (in Russian)
---
For citation: Sidorov A.A., Yastrebov A.K. Scientific Development and Assessment of the Applicability of a 1D Procedure for Analyzing the Performance of a Radial Turboexpander Operating on Mixed Working Fluids. Bulletin of MPEI. 2025;5:72—83. (in Russian). DOI: 10.24160/1993-6982-2025-5-72-82
---
The Work was Carried Out Russian Science Foundation (Project No. 23-29-00540)
---
Conflict of interests: the authors declare no conflict of interest

Published

2025-06-24

Issue

Section

Machines and apparatuses, processes of refrigeration and cryogenic engineering (technical sciences) (2.4.8.)