Validating the STEG-IATE Computer Code against the Experimental Data on Hydrodynamics of Two-phase Flows in Vertical Pipes

Authors

  • Александр [Aleksandr] Сергеевич [S.] Никулин [Nikulin]

DOI:

https://doi.org/10.24160/1993-6982-2025-5-95-103

Keywords:

hydrodynamics, two-phase flow, interfacial area, coalescence, fragmentation, validation

Abstract

The aim of the study is to validate the STEG-IATE thermal hydraulic computer code against the experimental data on the hydrodynamics of water-air flows in vertical pipes. A distinctive feature of this code is that it uses the interfacial area transport model (IATE) to determine the drag interaction between the phases. This model is an alternative to the conventional use of a two-phase flow regime map for determining the flow structure and subsequent calculation of the interfacial area. The IATE model advantages are that it predicts the gradual evolution of the interphase area change as a result of the dispersed phase coalescence and fragmentation processes occurring in a two-phase flow. The main difficulty associated with the development and application of this equation is the choice of expressions for describing the dispersed phase fragmentation and coalescence processes, as a result of which a change occurs in the number of particles and, accordingly, the interfacial area. To date, there are quite a lot of models of these phenomena proposed by different authors, but they have not been compared in a systematic manner. In this article, six approaches to describing these processes are considered. The results of validating the STEG-IATE code against the experimental data on two-phase flows in a vertical pipe have shown a noticeable improvement in the predictive ability for the range of low gas and liquid velocities, compared with the previous version of the STEG code with a map of flow regimes. In the range of high gas and liquid velocities, the results obtained using both the codes are close to each other. The testing of approaches to calculating the interfacial area transport has demonstrated that, in general, the best results are given by the model proposed by Smith T.R. It should be noted that the testing results have also shown that there is no universal model. Further improvement of the STEG code will be continued based on the models proposed by Smith T.R., Talley and Hibiki T., and Ishii M.

Author Biography

Александр [Aleksandr] Сергеевич [S.] Никулин [Nikulin]

Ph.D.-student of Nuclear Power Plants Dept., NRU MPEI, e-mail: e-mail: iskander0215@gmail.com

References

1. Лукасевич Б.И., Трунов Н.Б., Драгунов Ю.Г., Давиченко С.Е. Парогенераторы реакторных установок ВВЭР для атомных электростанций. М.: Академкнига, 2004.
2. Мелихов В.И., Мелихов О.И, Ле. Т.Т. Экспериментально-расчетные исследования гидродинамических процессов в горизонтальном парогенераторе. М.: Наука, 2022.
3. Le T. T., Melikhov V.I., Melikhov O.I., Nerovnov A.A., Nikonov S.M. Validation of the STEG Code Using PGV Experiments on Hydrodynamics of Horizontal Steam Generator // Nucl. Eng. Des. 2020. V. 356. P. 110380.
4. Le T.T., Melikhov V.I., Melikhov O.I., Blinkov V.N., Nerovnov A.A. Nikonov S.M. Investigation of the Equalization Capability of Submerged Perforated Sheets under Thermal-hydraulic Conditions of a Horizontal Steam Generator // Ann. Nucl. Energy. 2020. V. 148. P. 107715.
5. Le T.T., Melikhov V.I., Melikhov O.I. Recommended Set of Interfacial Drag Correlations for the Two-phase Flow Under Thermal-hydraulic Conditions of a Horizontal Steam Generator // Nucl. Eng. Des. 2021. V. 379. P. 111249.
6. Liu S., Yin F., Melikhov V.I., Melikhov O.I. Validation of the STEG Code Using Experiments on Two-phase Flow Across Horizontal Tube Bundle // Nucl. Eng. Des. 2022. V. 399. P. 112048.
7. Абди Х., Урегани Джафари Н., Мелихов В.И., Мелихов О.И. Валидация кода STEG на экспериментальных данных по гидродинамике горизонтального парогенератора // Теплоэнергетика. 2024. № 5. C. 32—44.
8. Ishii M., Hibiki T. Thermo-fluid Dynamics of Two-phase Flow. N.-Y.: Springer, 2011.
9. Wu Q., Kim S., Ishii M., Beus S.G. One-group Interfacial Area Transport in Vertical Bubbly Flow // Int. J. Heat Mass Transfer. 1998. V. 41. Pp. 1103—1112.
10. Ishii M., Kim S. Micro Four-sensor Probe Measurement of Interfacial Area Transport for Bubbly Flow in Round Pipes // Nucl. Eng. Des. 2001. V. 205. Pp. 123—131.
11. Hibiki T., Ishii M. One-group Interfacial Area Transport of Bubbly Flows in Vertical Round Tubes // Int. J. Heat Mass Transf. 2000. V. 43. Pp. 2711—2726.
12. Smith T.R., Schlegel J.P., Hibiki T., Ishii, M. Mechanistic Modeling of Interfacial Area Transport in Large Diameter Pipes // Int. J. Multiphase Flow. 2012. V. 47. Pp. 1—16.
13. Sun X.D., Kim S., Ishii M., Beus S.G. Modeling of Bubble Coalescence and Disintegration in Confined Upward Two-phase Flow // Nucl. Eng. Des. 2004. V. 230. Pp. 3—26.
14. Talley J.D., Kim S., Mahaffy J., Bajorek S.M., Tien K. Implementation and Evaluation of One-group Interfacial Area Transport Equation in TRACE // Nucl. Eng. Des. 2011. V. 241. Pp. 865—873.
15. Chen H. e. a. Interfacial Area Transport Equation for Bubble Coalescence and Breakup: Developments and Comparisons // Entropy. 2021. V. 23. 1106. Pp. 1—30.
16. Kim S., Ishii M., Kong R., Wang G. Progress in Two-phase Flow Modeling: Interfacial Area Transport // Nucl. Eng. Des. 2021. V. 373. P. 111019.
17. Шлихтинг Г. Теория пограничного слоя. М: Наука, 1974.
18. Prince M.J., Blanch H.W. Bubble Coalescence and Break-up in Air-sparged Bubble Columns // AIChE J. 1990. V. 36. Pp. 1485—1499.
---
Для цитирования: Никулин А.С. Валидация кода STEG-IATE на экспериментальных данных по гидродинамике двухфазных потоков в вертикальных трубах // Вестник МЭИ. 2025. № 5. С. 95—103. DOI: 10.24160/1993-6982-2025-5-95-103
---
Работа выполнена в рамках проекта «Разработка и применение программного продукта для моделирования теплогидравлических процессов в горизонтальном парогенераторе для АЭС с ВВЭР» при поддержке гранта НИУ «МЭИ» на реализацию программы научных исследований «Приоритет 2030: Технологии будущего» в 2024 — 2026 гг.
Автор также выражает благодарность профессору кафедры АЭС В.И. Мелихову за обсуждение результатов работы
#
1. Lukasevich B.I., Trunov N.B., Dragunov Yu.G., Davichenko S.E. Parogeneratory Reaktornykh Ustanovok VVER dlya Atomnykh Elektrostantsiy. M.: Akademkniga, 2004. (in Russian).
2. Melikhov V.I., Melikhov O.I, Le. T.T. Eksperimental'no-raschetnye Issledovaniya Gidrodinamicheskikh Protsessov v Gorizontal'nom Parogeneratore. M.: Nauka, 2022. (in Russian).
3. Le T. T., Melikhov V.I., Melikhov O.I., Nerovnov A.A., Nikonov S.M. Validation of the STEG Code Using PGV Experiments on Hydrodynamics of Horizontal Steam Generator. Nucl. Eng. Des. 2020;356:110380.
4. Le T.T., Melikhov V.I., Melikhov O.I., Blinkov V.N., Nerovnov A.A. Nikonov S.M. Investigation of the Equalization Capability of Submerged Perforated Sheets under Thermal-hydraulic Conditions of a Horizontal Steam Generator. Ann. Nucl. Energy. 2020;148:107715.
5. Le T.T., Melikhov V.I., Melikhov O.I. Recommended Set of Interfacial Drag Correlations for the Two-phase Flow Under Thermal-hydraulic Conditions of a Horizontal Steam Generator. Nucl. Eng. Des. 2021;379:111249.
6. Liu S., Yin F., Melikhov V.I., Melikhov O.I. Validation of the STEG Code Using Experiments on Two-phase Flow Across Horizontal Tube Bundle. Nucl. Eng. Des. 2022;399:112048.
7. Abdi Kh., Uregani Dzhafari N., Melikhov V.I., Melikhov O.I. Validatsiya Koda STEG na Eksperimental'nykh Dannykh po Gidrodinamike Gorizontal'nogo Parogeneratora. Teploenergetika. 2024;5:32—44. (in Russian).
8. Ishii M., Hibiki T. Thermo-fluid Dynamics of Two-phase Flow. N.-Y.: Springer, 2011.
9. Wu Q., Kim S., Ishii M., Beus S.G. One-group Interfacial Area Transport in Vertical Bubbly Flow. Int. J. Heat Mass Transfer. 1998;41:1103—1112.
10. Ishii M., Kim S. Micro Four-sensor Probe Measurement of Interfacial Area Transport for Bubbly Flow in Round Pipes. Nucl. Eng. Des. 2001;205:123—131.
11. Hibiki T., Ishii M. One-group Interfacial Area Transport of Bubbly Flows in Vertical Round Tubes. Int. J. Heat Mass Transf. 2000;43:2711—2726.
12. Smith T.R., Schlegel J.P., Hibiki T., Ishii, M. Mechanistic Modeling of Interfacial Area Transport in Large Diameter Pipes. Int. J. Multiphase Flow. 2012;47:1—16.
13. Sun X.D., Kim S., Ishii M., Beus S.G. Modeling of Bubble Coalescence and Disintegration in Confined Upward Two-phase Flow. Nucl. Eng. Des. 2004;230:3—26.
14. Talley J.D., Kim S., Mahaffy J., Bajorek S.M., Tien K. Implementation and Evaluation of One-group Interfacial Area Transport Equation in TRACE. Nucl. Eng. Des. 2011;241:865—873.
15. Chen H. e. a. Interfacial Area Transport Equation for Bubble Coalescence and Breakup: Developments and Comparisons. Entropy. 2021;23. 1106:1—30.
16. Kim S., Ishii M., Kong R., Wang G. Progress in Two-phase Flow Modeling: Interfacial Area Transport. Nucl. Eng. Des. 2021;373:111019.
17. Shlikhting G. Teoriya Pogranichnogo Sloya. M: Nauka, 1974. (in Russian).
18. Prince M.J., Blanch H.W. Bubble Coalescence and Break-up in Air-sparged Bubble Columns. AIChE J. 1990;36:1485—1499
---
For citation: Nikulin A.S. Validating the STEG-IATE Computer Code against the Experimental Data on Hydrodynamics of Two-phase Flows in Vertical Pipes. Bulletin of MPEI. 2025;5:95—103. (in Russian). DOI: 10.24160/1993-6982-2025-5-95-103
---
The Work was Carried Out as Part of the Project «Development and Application of a Software Product for Modeling Thermal and Hydraulic Processes in a Horizontal Steam Generator for VVER Nuclear Power Plants» supported by a grant from the National Research University "MPEI" for the Implementation of the Priority 2030: Future Technologies Research Program in 2024 — 2026.
The Author Also Expresses Gratitude to Professor V.I. Melikhov of the NPP Department for Discussing the Results of the Work

Published

2025-06-24

Issue

Section

Nuclear Power Plants, Fuel Cycle, Radiation Safety (Technical Sciences) (2.4.9)