An Overview of Hash Function Cryptanalysis Methods

Authors

  • Алексей [Aleksey] Олегович [O.] Борисов [Borisov]
  • Анна [Anna] Васильевна [V.] Епишкина [Epishkina]

DOI:

https://doi.org/10.24160/1993-6982-2025-5-146-152

Keywords:

hashing function, cryptanalysis, collision, neuron, compression functions

Abstract

Nowadays, we are witnessing rapid development of digitalization and network technologies, which intensely use cryptographic algorithms like ciphers, hash functions, and digital signatures. To ensure information security, it is important to use strong cryptographic primitives. Their strength is determined by cryptanalysis. The article addresses methods for cryptographic analysis of hash functions. The aim of the study is to develop a method for analyzing cryptographic hash functions based on neural networks. To this end, the following tasks were set forth:

- defining target requirements for cryptographic hash functions for which cryptographic analysis using artificial neural networks (ANN) is possible;

- searching for an algorithm for analyzing hash functions using ANN;

- determining the ANN type for analyzing cryptographic hash functions.

The existing methods for analyzing iterative cryptographic hash functions are classified. A method for analyzing hash functions using neural networks is proposed. The type of artificial neural networks suitable for performing hash function analysis is determined. A method for evaluating the strength of cryptographic hash functions using neural networks is described. The application field of the study results obtained is quite extensive in nature. It includes both the use of ANN to analyze specific hashing functions for resistance to finding a preimage, resistance to searching for collisions of the first and second kind, and the comparison of several hash functions with each other. The use of neural networks in the analysis of hash functions will make it possible to bring the computer analysis of hash functions closer to a cryptanalysis conducted by qualified specialists in the field of information security. Existing methods for assessing the resistance of hash functions to various attacks are based on mathematical principles that may be far from the "real" resistance of a cryptographic primitive. Thus, artificial neural networks provide a different approach to analyzing cryptographic hash functions.

Author Biographies

Алексей [Aleksey] Олегович [O.] Борисов [Borisov]

Ph.D.-student of the National Research Nuclear University MEPhI, e-mail: aleksshru@gmail.com

Анна [Anna] Васильевна [V.] Епишкина [Epishkina]

Ph.D. (Techn.), Assistant Professor, Head of Cryptology and Cybersecurity Dept., Research and Educational Center «Security of Intelligent Cyber-Physical Systems», Institute of Intelligent Cybernetic Systems of the National Research Nuclear University MEPhI; Leading Researcher, Institute of Intelligent Cybernetic Systems of the National Research Nuclear University MEPhI

References

1. Merkle R.C. One Way Hash Functions and DES // CRYPTO’89. Lect. Notes Comput. Sci. 1990. V. 435. Pp. 428—446.
2. Damgaard I. A Design Principle for Hash Functions // Ibid. Pp. 416—427.
3. Rivest R. The MD5 Message-digest Algorithm. Request for Comments (RFC) 1321. Internet Activities Board. Internet Privacy Task Force, 1992.
4. FIPS PUB 180–1. Secure Hash Standard [Электрон. ресурс] https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/fipspub180-1.pdf (дата обращения 14.02.2025).
5. FIPS PUB 180–2. Secure Hash Standard [Электрон. ресурс] https://csrc.nist.gov/files/pubs/fips/180-2/final/docs/fips180-2.pdf (дата обращения 14.02.2025).
6. ГОСТ Р 34.11—2018. Информационная технология. Криптографическая защита информации. Функция хэширования.
7. Chandra B., Varghese P. Applications of Cascade Correlation Neural Networks for Cipher System Identification // World Academy of Sci., Engineering and Technology. 2007. V. 26. Pp. 312—314.
8. Do T.-T., Doan A.-D., Cheung N.-M. Learning to Hash with Binary Deep Neural Network // Lecture Notes in Computer Sci. 2016. V. 9909. Pp. 219—234.
9. Turčaník M., Javurek M. Hash Function Generation by Neural Network // New Trends in Signal Proc. 2016. Pp. 1—5.
10. Гусев В.В. Легальные сообщения для некоторых функций имитозащиты блочных шифров // Математические вопросы криптографии. 2018. № 9(1). С. 27—46.
11. Zaikin O.S., Davydov V.V., Kiryanova A.P. Применение алгоритмов решения проблемы булевой выполнимости для анализа финалистов конкурса SHA-3 // Вычислительные методы и программирование. 2024. Т. 25. С. 259—273.
12. Агиевич С.В. Криптографические методы [Электрон. ресурс] https://apmi.bsu.by/assets/files/agievich/cm.pdf (дата обращения 05.12.2024).
13. Мордашов А.С. Статистическое тестирование российского стандарта функции хэширования ГОСТ 34. 11—2012 («Стрибог») // Вопросы кибербезопасности. 2015. № 3(11). С. 56—59.
14. Бабенко Л.К., Ищукова Е.А. Финалисты конкурса SHA-3 и основные сведения об их анализе // Известия Южного федерального ун-та. Серия «Технические науки». 2013. №. 12(149). С. 216—227.
15. AlTawy R., Kircanski A., Youssef A.M. Rebound Attacks on Stribog [Электрон. ресурс] https://users.encs.concordia.ca/~youssef/Publications/Papers/Rebound%20Attacks%20on%20Stribog.pdf (дата обращения 05.12.2024).
16. Николенко С., Кадурин А., Архангельская Е. Глубокое обучение. СПб.: Питер, 2018.
17. Cybenko G.V. Approximation by Superpositions of a Sigmoidal function // Mathematics of Control Signals and Systems. 1989. V. 2(4). Pp. 303—314.
18. Сергеев А.М., Кирюхин В.А. О стойкости ключевых хеш-функций, основанных на ГОСТ 34.11-2018 («Стрибог»), к атакам на ключ // Прикладная дискретная математика. 2023. № 16. С. 96—98.
19. Дубровский М.И., Тищенко А.А. Методы анализа криптостойкости хеш-функций // Прорывные научные исследования как двигатель: Сб. статей Междунар. науч.-практ. конф. Тюмень: Науч.-издат. центр «Аэтерна», 2018. С. 9.
20. Леонова А.А., Смирнов Г.Е. Сравнение точности анализа данных посредством рекуррентных нейронных сетей // Научный аспект. 2024. № 6. С. 284.
---
Для цитирования: Борисов А.О., Епишкина А.В. Обзор методов криптоанализа хеш-функций // Вестник МЭИ. 2025. № 5. С. 146—152. DOI: 10.24160/1993-6982-2025-5-146-152
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Merkle R.C. One Way Hash Functions and DES. CRYPTO’89. Lect. Notes Comput. Sci. 1990;435:428—446.
2. Damgaard I. A Design Principle for Hash Functions. Ibid:416—427.
3. Rivest R. The MD5 Message-digest Algorithm. Request for Comments (RFC) 1321. Internet Activities Board. Internet Privacy Task Force, 1992.
4. FIPS PUB 180–1. Secure Hash Standard [Elektron. Resurs] https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/fipspub180-1.pdf (Data Obrashcheniya 14.02.2025).
5. FIPS PUB 180–2. Secure Hash Standard [Elektron. Resurs] https://csrc.nist.gov/files/pubs/fips/180-2/final/docs/fips180-2.pdf (Data Obrashcheniya 14.02.2025).
6. GOST R 34.11—2018. Informatsionnaya Tekhnologiya. Kriptograficheskaya Zashchita Informatsii. Funktsiya Kheshirovaniya. (in Russian).
7. Chandra B., Varghese P. Applications of Cascade Correlation Neural Networks for Cipher System Identification. World Academy of Sci., Engineering and Technology. 2007;26:312—314.
8. Do T.-T., Doan A.-D., Cheung N.-M. Learning to Hash with Binary Deep Neural Network. Lecture Notes in Computer Sci. 2016;9909:219—234.
9. Turčaník M., Javurek M. Hash Function Generation by Neural Network. New Trends in Signal Proc. 2016:1—5.
10. Gusev V.V. Legal'nye Soobshcheniya dlya Nekotorykh Funktsiy Imitozashchity Blochnykh Shifrov. Matematicheskie Voprosy Kriptografii. 2018;9(1):27—46. (in Russian).
11. Zaikin O.S., Davydov V.V., Kiryanova A.P. Primenenie Algoritmov Resheniya Problemy Bulevoy Vypolnimosti dlya Analiza Finalistov Konkursa SHA-3. Vychislitel'nye Metody i Programmirovanie. 2024;25:259—273. (in Russian).
12. Agievich S.V. Kriptograficheskie Metody [Elektron. Resurs] https://apmi.bsu.by/assets/files/agievich/cm.pdf (Data Obrashcheniya 05.12.2024).
13. Mordashov A.S. Statisticheskoe Testirovanie Rossiyskogo Standarta Funktsii Kheshirovaniya GOST 34. 11—2012 («Stribog»). Voprosy Kiberbezopasnosti. 2015;3(11):56—59. (in Russian).
14. Babenko L.K., Ishchukova E.A. Finalisty Konkursa SHA-3 i Osnovnye Svedeniya ob Ikh Analize. Izvestiya Yuzhnogo Federal'nogo Un-ta. Seriya «Tekhnicheskie Nauki». 2013;12(149):216—227. (in Russian).
15. AlTawy R., Kircanski A., Youssef A.M. Rebound Attacks on Stribog [Elektron. Resurs] https://users.encs.concordia.ca/~youssef/Publications/Papers/Rebound%20Attacks%20on%20Stribog.pdf (Data Obrashcheniya 05.12.2024).
16. Nikolenko S., Kadurin A., Arkhangel'skaya E. Glubokoe Obuchenie. SPb.: Piter, 2018. (in Russian).
17. Cybenko G.V. Approximation by Superpositions of a Sigmoidal function. Mathematics of Control Signals and Systems. 1989;2(4):303—314.
18. Sergeev A.M., Kiryukhin V.A. O Stoykosti Klyuchevykh Khesh-funktsiy, Osnovannykh na GOST 34.11-2018 («Stribog»), k Atakam na Klyuch. Prikladnaya Diskretnaya Matematika. 2023;16:96—98. (in Russian).
19. Dubrovskiy M.I., Tishchenko A.A. Metody Analiza Kriptostoykosti Khesh-funktsiy. Proryvnye Nauchnye Issledovaniya kak Dvigatel': Sb. Statey Mezhdunar. Nauch.-prakt. Konf. Tyumen': Nauch.-izdat. Tsentr «Aeterna», 2018:9. (in Russian).
20. Leonova A.A., Smirnov G.E. Sravnenie Tochnosti Analiza Dannykh Posredstvom Rekurrentnykh Neyronnykh Setey. Nauchnyy Aspekt. 2024;6:284. (in Russian)
---
For citation: Borisov A.O., Epishkina A.V. An Overview of Hash Function Cryptanalysis Methods. Bulletin of MPEI. 2025;5:146—152. (in Russian). DOI: 10.24160/1993-6982-2025-5-146-152
---
Conflict of interests: the authors declare no conflict of interest

Published

2025-06-24

Issue

Section

Information security methods and systems, information security (technical sciences) (2.3.6.)