A Method for Calculating Electromagnetic Transients in a Dynamic Simulation Environment Using Electrical Machine Finite Element Models

Authors

  • Yuliya V. Domracheva

DOI:

https://doi.org/10.24160/1993-6982-2025-6-21-27

Keywords:

electrical machine model, finite element model, dynamic simulation environment, electrical machine core saturation, transient

Abstract

The aim of the study is to expand the capabilities offered by dynamic simulation of electrical drive control systems to adjust their operation under electrical machine core saturation conditions. The article describes an electrical machine modeling method that combines analytical calculation and finite element analysis. The functionality of the obtained model allows it to be used as part of a control object in a dynamic simulation system. Supplementing the analytical model with the finite element method allows one to accurately take into account all features of the machine magnetic system geometry and nonuniform saturation of the cores. The practical implementation of the proposed model using the Octave and FEMM software packages, and its interaction with the SimInTech dynamic simulation environment are considered. In particular, the interaction structure and features of specifying the material magnetization curve and calculating the differential inductances of the electrical machine windings using the finite element method are described. The results from experimental tests of the model for simulating electromagnetic transients in a system with negative current feedback are given. The proposed structure can be used as a basis for constructing models of various electrical machines suitable for use in a dynamic simulation system to test the control system performance under core saturation conditions and for any rotor displacements.

Author Biography

Yuliya V. Domracheva

Ph.D. (Techn.), Assistant Professor of Electric Power Engineering, Electric Drive, and Automation Systems Dept., Pskov State University, e-mail: jv.domracheva@pskgu.ru

References

1. Красовский А.Б. Имитационные модели в теории и практике вентильно-индукторного электропривода: дис. … доктора техн. наук. М.: МГТУ им. Н.Э. Баумана, 2003.

2. Красовский А.Б., Кузнецов С.А., Трунин Ю.В. Моделирование магнитных характеристик вентильно-индукторных машин // Вестник МГТУ им. Н.Э. Баумана. Серия «Естественные науки». 2007. № 4(27). С. 57—77.

3. Яременко А.М. и др. Карта намагничивания вентильно-индукторного электродвигателя: экспериментальный подход // Научно-технический вестник информационных технологий, механики и оптики. 2024. Т. 24. № 5. С. 858—865.

4. Kumar R., Kar N.C. Sub-domain Model for Induction Motor with More Accurate Realization of Tooth-saturation // IEEE Trans. Energy Conversion. 2024. V. 39(3). Pp. 1673—1685.

5. Dalal A., Kumar P. Analytical Model of a Permanent Magnet Brushless DC Motor with Non-linear Ferromagnetic Material // Proc. Intern. Conf. Electrical Machines. Berlin, 2014. Pp. 2674—2680.

6. Fan J., Lee Y. Sensorless Control of Switched Reluctance Motor Based on a Simple Flux Linkage Model // Electrical Eng. & Electromechanics. 2023. V. 3. Pp. 36—39.

7. Huijun Zhou, Wen Ding, Zhenmin Yu. A Nonlinear Model for the Switched Reluctance Motor // Proc. VIII Intern. Conf. Electrical Machines and Systems. Nanjing, 2005. V. 1. Pp. 568—571.

8. Domracheva Y., Loginov S. Simulation Technique of Synchronous Reluctance Bearingless Machine // Proc. IX Intern. Sci. and Practical Conf. Environment. Technology. Resources. Rezekne, 2013. Pp. 101—105.

9. Zhaokai Li e. a. Hybrid Analytical Model of Permanent Magnet Linear Motor Considering Iron Saturation and End Effect // IEEE Trans. Energy Conversion. 2024. V. 39(3). Pp. 2008—2017.

10. Zhaokai Li, Xiaoyan Huang, Peretti L. The Scalable Analytical Model for Calculating the Magnetic Field of Surface-mounted Permanent Magnet Motor // IEEE Trans. Industrial Electronics. 2024. V. 71(10). Pp. 12770—12780.

11. Schmidt E., Susic M. Parameter Evaluation of Permanent Magnet Synchronous Machines with Tooth Coil Windings Using the Frozen Permeabilities Method with the Finite Element Analyses // Proc. XXV IEEE Canadian Conf. Electrical and Computer Eng. Montreal, 2012. Pp. 1—5.

12. Paula G.T. e. a. Evaluation of Surface Mounted PM Machine’s Parameters on Load Conditions Using Frozen Permeability Method. Part I // Proc. XXIII Intern. Symp. Industrial Electronics. Istambul, 2014. Pp. 806—811.

13. Paula G.T. e. a. Evaluation of Surface Mounted PM Machine’s Parameters on Load Conditions Using Frozen Permeability Method. Part II // Proc. Intern. Symp. Electrical Machines. Berlin, 2014. Pp. 156—161.

14. Paula G.T. e. a. Evaluation of Surface Mounted PM Machine’s Parameters on Load Conditions Using Frozen Permeability Method. Part III. // Proc. XI Intern. Conf. Industry Appl. Juiz de Fora, 2014. Pp. 1—7.

15. Crozier R., Mueller M. A New MATLAB and Octave Interface to a Popular Magnetics Finite Element Code // Proc. XXII Intern. Conf. Electrical Machines. Lausanne, 2016. Pp. 1251—1256.

---

Для цитирования: Домрачева Ю.В. Способ расчета электромагнитных переходных процессов в среде динамического моделирования с применением конечно-элементных моделей электрических машин // Вестник МЭИ. 2025. № 6. С. 21—27. DOI: 10.24160/1993-6982-2025-6-21-27.

#

1. Krasovskiy A.B. Imitatsionnye Modeli v Teorii i Praktike Ventil'no-induktornogo Elektroprivoda: Dis. … Doktora Tekhn. Nauk. M.: MGTU im. N.E. Baumana, 2003. (in Russian).

2. Krasovskiy A.B., Kuznetsov S.A., Trunin Yu.V. Modelirovanie Magnitnykh Kharakteristik Ventil'no-induktornykh Mashin. Vestnik MGTU im. N.E. Baumana. Seriya «Estestvennye nauki». 2007;4(27):57—77. (in Russian).

3. Yaremenko A.M. i dr. Karta Namagnichivaniya Ventil'no-induktornogo Elektrodvigatelya: Eksperimental'nyy Podkhod. Nauchno-tekhnicheskiy Vestnik Informatsionnykh Tekhnologiy, Mekhaniki i Optiki. 2024;24;5:858—865. (in Russian).

4. Kumar R., Kar N.C. Sub-domain Model for Induction Motor with More Accurate Realization of Tooth-saturation. IEEE Trans. Energy Conversion. 2024;39(3):1673—1685.

5. Dalal A., Kumar P. Analytical Model of a Permanent Magnet Brushless DC Motor with Non-linear Ferromagnetic Material. Proc. Intern. Conf. Electrical Machines. Berlin, 2014:2674—2680.

6. Fan J., Lee Y. Sensorless Control of Switched Reluctance Motor Based on a Simple Flux Linkage Model. Electrical Eng. & Electromechanics. 2023;3:36—39.

7. Huijun Zhou, Wen Ding, Zhenmin Yu. A Nonlinear Model for the Switched Reluctance Motor. Proc. VIII Intern. Conf. Electrical Machines and Systems. Nanjing, 2005;1:568—571.

8. Domracheva Y., Loginov S. Simulation Technique of Synchronous Reluctance Bearingless Machine. Proc. IX Intern. Sci. and Practical Conf. Environment. Technology. Resources. Rezekne, 2013:101—105.

9. Zhaokai Li e. a. Hybrid Analytical Model of Permanent Magnet Linear Motor Considering Iron Saturation and End Effect. IEEE Trans. Energy Conversion. 2024;39(3):2008—2017.

10. Zhaokai Li, Xiaoyan Huang, Peretti L. The Scalable Analytical Model for Calculating the Magnetic Field of Surface-mounted Permanent Magnet Motor. IEEE Trans. Industrial Electronics. 2024;71(10):12770—12780.

11. Schmidt E., Susic M. Parameter Evaluation of Permanent Magnet Synchronous Machines with Tooth Coil Windings Using the Frozen Permeabilities Method with the Finite Element Analyses. Proc. XXV IEEE Canadian Conf. Electrical and Computer Eng. Montreal, 2012:1—5.

12. Paula G.T. e. a. Evaluation of Surface Mounted PM Machine’s Parameters on Load Conditions Using Frozen Permeability Method. Part I. Proc. XXIII Intern. Symp. Industrial Electronics. Istambul, 2014:806—811.

13. Paula G.T. e. a. Evaluation of Surface Mounted PM Machine’s Parameters on Load Conditions Using Frozen Permeability Method. Part II. Proc. Intern. Symp. Electrical Machines. Berlin, 2014:156—161.

14. Paula G.T. e. a. Evaluation of Surface Mounted PM Machine’s Parameters on Load Conditions Using Frozen Permeability Method. Part III.. Proc. XI Intern. Conf. Industry Appl. Juiz de Fora, 2014:1—7.

15. Crozier R., Mueller M. A New MATLAB and Octave Interface to a Popular Magnetics Finite Element Code. Proc. XXII Intern. Conf. Electrical Machines. Lausanne, 2016:1251—1256

---

For citation: Domracheva Yu.V. A Method for Calculating Electromagnetic Transients in a Dynamic Simulation Environment Using Electrical Machine Finite Element Models. Bulletin of MPEI. 2025;6:21—27. (in Russian). DOI: 10.24160/1993-6982-2025-6-21-27.

Published

2025-12-26

Issue

Section

Electrical Complexes and Systems (2.4.2)