Power Flows Control in a Closed Medium-voltage Electrical Network
DOI:
https://doi.org/10.24160/1993-6982-2025-6-38-49Keywords:
thyristor voltage regulator, longitudinal-and-quadrature regulation, closed electrical network, power flows, electric power quality, simulationAbstract
Contemporary electric power systems are undergoing major changes due to the growing complexity of their hierarchy, transformation into cyber-physical systems and increasing the rate with which distributed generation (DG) sources are introduced, including those based on renewable energy sources (RES). Problems in distribution electrical networks (DEN) containing RES based distributed generation associated with undesirable active and reactive power flows between sources, and deterioration in the quality of electricity transmitted entail additional loss of electricity and lower system stability as a whole. Existing voltage and power control devices do not meet the regulatory requirements imposed on them during operation in medium-voltage DENs. The problem of power flows control and voltage level stabilization in a closed 6-20 kV DEN with RES based distributed generation can be solved using a thyristor voltage regulator (TVR). TVR is a semiconductor voltage boosting device with the possibility of longitudinal (value) and quadrature (phase angle) voltage regulation. The article describes a study of the effect the longitudinal-transverse TVR regulation modes have on the parameters of a closed DEN with RES based distributed generation. For carrying out the study, a Matlab model of a closed-circuit DEN with two power sources, TVR, and loads was developed. The operation principle of the model TVR unit longitudinal-qua control is considered. The results of studying the TVR with longitudinal-and-quadrature control in the decreasing-lagging and increasing-advancing modes have shown the TVR ability to effectively redistribute the load between power sources while maintaining the voltage on the load busbars within acceptable limits.
References
1. Cai W. e. a. Safety Assessment of Loop Closing in Active Distribution Networks Based on Probabilistic Power Flow // Energies. 2025. V. 18. Pp. 1—19.
2. Xie W. e. a. Application of Voltage Optimization Strategy for Rotary Power Flow Controllers in Loop Closing of Distribution Networks // Electronics. 2025. V. 14. Pp. 1—14.
3. Jarnut M., Kaniewski J., Buciakowski M. Energy Storage Systems for Fluctuating Energy Sources and Fluctuating Loads — Analysis of Selected Cases // Energies. 2025. V. 18. Pp. 1—18.
4. Подковальников С.В. Смена парадигмы управления электроэнергетическими системами // Электричество. 2024. № 3. С. 4—15.
5. Vali A.K. e. a. Deep-learning-based Controller for Parallel DSTATCOM to Improve Power Quality in Distribution System // Energies. 2025. V. 18. Pp. 1—28.
6. Gielnik F., Hormel S., Suriyah M., Leibfried T. Comparison of Active and Passive Grid Coupling in Distribution Grids Using Particle Swarm Optimization // Processes. 2025. V. 13. Pp. 1—17.
7. Onsomu O.N., Terciyanlı, E., Yeşilata B. Optimal Dispatch of a Virtual Power Plant Considering Distributed Energy Resources under Uncertainty // Energies. 2025. V. 18. Pp. 1—27.
8. Lak P.Y., Lim J.-W., Nam S.-R. Deep Neural Network-based Optimal Power Flow for Active Distribution Systems with High Photovoltaic Penetration // Energies. 2025. V. 18. Pp. 1—17.
9. Xu X. e. a. Multi-mode Control of a Hybrid Transformer for the Coordinated Regulation of Voltage and Reverse Power in Active Distribution Network // Processes. 2024. V. 12. Pp. 1—22.
10. Xu Y., Huang F., Diao Y., Bi C., Jin X., Wang J. Novel Single-core Phase-shifting Transformer: Configuration, Analysis and Application in Loop Closing // Energies. 2025. V. 18. Pp. 1—15.
11. Jagtap P., Chandrakar V.K. Advanced UPFC Controllers to Improve Transient and Dynamic Stability of Power System // Proc. Intern. Conf. Advances in Mechanical Eng. Nagpur, 2023. Pp. 1—7.
12. Ammr S.M., Asghar M.S., Ashraf I., Meraj M.A. Comprehensive Review of Power Flow Controllers in Interconnected Power System Networks // IEEE Access. 2020. V. 8. Pp. 18036—18063.
13. Singh P., Tiwari R., Sangwan V., Gupta A.K. Optimal Allocation of Thyristor-controlled Series Capacitor (TCSC) and Thyristor-controlled Phase-shifting Transformer (TCPST) // Proc. Intern. Conf. Power Electronics & IoT Applications in Renewable Energy and Its Control. Mathura, 2020. Pp. 491—496.
14. Xu Z., Qin R., Ma H., Lu J., Tang J., Yang Y. Research on The Optimal Regulation Strategy of Loop Closing Device Based on Phase Shifting Transformer // Proc. IEEE V Conf. Energy Internet and Energy System Integration. Taiyuan, 2021. Pp. 1203—208.
15. Асабин А.А., Белянин И.В., Соснина Е.Н., Бедретдинов Р.Ш., Крюков Е.В. Система управления тиристорного регулятора напряжения // Интеллектуальная электротехника. 2020. № 1(9). С. 25—39.
16. Пат. № 192343 РФ. Устройство управления тиристорным регулятором вольтодобавочного напряжения / Асабин А.А., Соснина Е.Н., Кралин А.А., Бедретдинов Р.Ш. // Бюл. изобрет. 2019. № 26.
17. Асабин А.А., Кралин А.А. Энергетические показатели тиристорного регулятора переменного напряжения с вольтодобавочным трансформатором при поочередном двухзонном управлении // Интеллектуальная электротехника. 2018. № 2. С. 93—104.
18. Соснина Е.Н., Асабин А.А., Бедретдинов Р.Ш., Крюков Е.В., Гусев Д.А. Тиристорное вольтодобавочное устройство для снижения колебаний напряжения в системах электроснабжения горнорудных предприятий // Записки Горного института. 2025. Т. 272. С. 159—170.
19. Соснина Е.Н., Кралин А.А., Бедретдинов Р.Ш., Крюков Е.В., Гусев Д.А. Исследование режимов работы в замкнутой электрической сети 10 кВ с источником распределенной генерации и тиристорным регулятором напряжения // Электротехника. 2025. № 10. С. 91—104.
20. Jin W., Liu H., Zhang W., Yuan J. Power Flow Regulation Effect and Parameter Design Method of Phase-Shifting Transformer // Energies. 2024. V. 17. Pp. 1—17.
21. Sosnina E., Bedretdinov R., Kryukov E., Gusev D. Power Flows Control in a Multi-Source Power Distribution Electrical Network // Proc. IEEE 26th Intern. Conf. Young Professionals in Electron Devices and Materials. Altai, 2025. Pp. 930—934.
22. Martinelli S., Alvarez A.E., Papadopoulos P. Simulating the Future Renewable-based Power Network: High-performance Computing for Power Systems Analysis // Project Rep. Electronic and Electrical Engineering. 2021.
23. ГОСТ 32144—2013. Нормы качества энергии в системах электроснабжения общего назначения.
---
Для цитирования: Соснина Е.Н., Кралин А.А., Бедретдинов Р.Ш., Крюков Е.В., Гусев Д.А. Управление потоками мощности в замкнутой электрической сети среднего напряжения // Вестник МЭИ. 2025. № 6. С. 38—49. DOI: 10.24160/1993-6982-2025-6-38-49
---
Работа выполнена при поддержке Российского научного фонда (грант № 24-29-00872), https://rscf.ru/project/24-29-00872/
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Cai W. e. a. Safety Assessment of Loop Closing in Active Distribution Networks Based on Probabilistic Power Flow. Energies. 2025;18:1—19.
2. Xie W. e. a. Application of Voltage Optimization Strategy for Rotary Power Flow Controllers in Loop Closing of Distribution Networks. Electronics. 2025;14:1—14.
3. Jarnut M., Kaniewski J., Buciakowski M. Energy Storage Systems for Fluctuating Energy Sources and Fluctuating Loads — Analysis of Selected Cases. Energies. 2025;18:1—18.
4. Podkoval'nikov S.V. Smena Paradigmy Upravleniya Elektroenergeticheskimi Sistemami. Elektrichestvo. 2024;3:4—15. (in Russian).
5. Vali A.K. e. a. Deep-learning-based Controller for Parallel DSTATCOM to
Improve Power Quality in Distribution System. Energies. 2025;18:1—28.
6. Gielnik F., Hormel S., Suriyah M., Leibfried T. Comparison of Active and Passive Grid Coupling in Distribution Grids Using Particle Swarm Optimization. Processes. 2025;13:1—17.
7. Onsomu O.N., Terciyanlı, E., Yeşilata B. Optimal Dispatch of a Virtual Power Plant Considering Distributed Energy Resources under Uncertainty. Energies. 2025;18:1—27.
8. Lak P.Y., Lim J.-W., Nam S.-R. Deep Neural Network-based Optimal Power Flow for Active Distribution Systems with High Photovoltaic Penetration. Energies. 2025;18:1—17.
9. Xu X. e. a. Multi-mode Control of a Hybrid Transformer for the Coordinated Regulation of Voltage and Reverse Power in Active Distribution Network. Processes. 2024;12:1—22.
10. Xu Y., Huang F., Diao Y., Bi C., Jin X., Wang J. Novel Single-core Phase-shifting Transformer: Configuration, Analysis and Application in Loop Closing. Energies. 2025;18:1—15.
11. Jagtap P., Chandrakar V.K. Advanced UPFC Controllers to Improve Transient and Dynamic Stability of Power System. Proc. Intern. Conf. Advances in Mechanical Eng. Nagpur, 2023:1—7.
12. Ammr S.M., Asghar M.S., Ashraf I., Meraj M.A. Comprehensive Review of Power Flow Controllers in Interconnected Power System Networks. IEEE Access. 2020;8:18036—18063.
13. Singh P., Tiwari R., Sangwan V., Gupta A.K. Optimal Allocation of Thyristor-controlled Series Capacitor (TCSC) and Thyristor-controlled Phase-shifting Transformer (TCPST). Proc. Intern. Conf. Power Electronics & IoT Applications in Renewable Energy and Its Control. Mathura, 2020:491—496.
14. Xu Z., Qin R., Ma H., Lu J., Tang J., Yang Y. Research on The Optimal Regulation Strategy of Loop Closing Device Based on Phase Shifting Transformer. Proc. IEEE V Conf. Energy Internet and Energy System Integration. Taiyuan, 2021:1203—208.
15. Asabin A.A., Belyanin I.V., Sosnina E.N., Bedretdinov R.Sh., Kryukov E.V. Sistema Upravleniya Tiristornogo Regulyatora Napryazheniya. Intellektual'naya Elektrotekhnika. 2020;1(9):25—39. (in Russian).
16. Pat. № 192343 RF. Ustroystvo Upravleniya Tiristornym Regulyatorom Vol'todobavochnogo Napryazheniya. Asabin A.A., Sosnina E.N., Kralin A.A., Bedretdinov R.Sh. Byul. izobret. 2019;26. (in Russian).
17. Asabin A.A., Kralin A.A. Energeticheskie Pokazateli Tiristornogo Regulyatora Peremennogo Napryazheniya s Vol'todobavochnym Transformatorom pri Poocherednom Dvukhzonnom Upravlenii. Intellektual'naya Elektrotekhnika. 2018;2:93—104. (in Russian).
18. Sosnina E.N., Asabin A.A., Bedretdinov R.SH., Kryukov E.V., Gusev D.A. Tiristornoe Vol'todobavochnoe Ustroystvo Dlya Snizheniya Kolebaniy Napryazheniya v Sistemakh Elektrosnabzheniya Gornorudnykh Predpriyatiy. Zapiski Gornogo Instituta. 2025;272:159—170. (in Russian).
19. Sosnina E.N., Kralin A.A., Bedretdinov R.Sh., Kryukov E.V., Gusev D.A. Issledovanie Rezhimov Raboty v Zamknutoy Elektricheskoy Seti 10 kV s Istochnikom Raspredelennoy Generatsii i Tiristornym Regulyatorom Napryazheniya. Elektrotekhnika. 2025;10:91—104. (in Russian).
20. Jin W., Liu H., Zhang W., Yuan J. Power Flow Regulation Effect and Parameter Design Method of Phase-Shifting Transformer. Energies. 2024;17:1—17.
21. Sosnina E., Bedretdinov R., Kryukov E., Gusev D. Power Flows Control in a Multi-Source Power Distribution Electrical Network. Proc. IEEE 26th Intern. Conf. Young Professionals in Electron Devices and Materials. Altai, 2025:930—934.
22. Martinelli S., Alvarez A.E., Papadopoulos P. Simulating the Future Renewable-based Power Network: High-performance Computing for Power Systems Analysis. Project Rep. Electronic and Electrical Engineering. 2021.
23. GOST 32144—2013. Normy Kachestva Energii v Sistemakh Elektrosnabzheniya Obshchego Naznacheniya. (in Russian)
---
For citation: Sosnina E.N., Kralin A.A., Bedretdinov R.Sh., Kryukov E.V., Gusev D.A. Power Flows Control in a Closed Medium-voltage Electrical Network. Bulletin of MPEI. 2025;6:38—49. (in Russian). DOI: 10.24160/1993-6982-2025-6-38-49
---
The Work was Supported by the Russian Science Foundation (Grant No. 24-29-00872), https://rscf.ru/project/24-29-00872
---
Conflict of interests: the authors declare no conflict of interest

