Overview of Approaches to the Selection of Minimum Hydrostatic Test Pressure for Nuclear Power Plant Equipment and Pipelines

Authors

  • Vladimir V. Potapov
  • Dmitriy A. Kuz’min
  • Aleksandr Yu. Kuz’michevskiy
  • Daniil D. Levchenko
  • Oleg S. Tolkachev

DOI:

https://doi.org/10.24160/1993-6982-2025-6-146-154

Keywords:

pressure reduction, equipment and pipelines, hydrostatic strength tests, nuclear power plant

Abstract

The aim of the study is to determine the possibility of reducing the pressure of hydrostatic tests of nuclear power plant equipment and pipelines in the Russian Federation to reduce their damageability during operation. To this end, the article considers the Russian and foreign regulatory documents stipulating the procedure and parameters for conducting hydrostatic tests. The article also considers patents and articles addressing an analysis and experience gained from conducting hydrostatic tests of equipment and pipelines at nuclear power plants, in the petroleum and gas industry, in heat networks, etc. It has been shown from the analysis that around the world, various approaches to the choice of hydrostatic test pressure for equipment and pipelines are used, the value of which is in some cases lower than that for NPPs in the Russian Federation. There are also approaches to and positive experience gained from reducing the strength test hydrostatic pressure. Thus, the modern global trends and tendencies presented in the article confirm the need to improve the current regulatory framework stipulating the parameters of hydrostatic tests at nuclear power plants in the Russian Federation. The trends toward optimizing the hydrostatic test pressure confirm the relevance of carrying out further studies aimed at updating the hydraulic test parameters calculation methods. Updating of the regulatory framework of the Russian Federation in terms of reducing the pressure of hydrostatic tests at nuclear power plants will help reduce the damageability of equipment and pipelines at NPPs in the Russian Federation.

Author Biographies

Vladimir V. Potapov

Ph.D. (Techn.), Deputy Director of VNIIAES (Scientific and Technical Support), Director of the Resource Management for Nuclear Power Plants Dept., All-Russian Research Institute for Nuclear Power Plants Operation, e-mail: VVPotapov@vniiaes.ru

Dmitriy A. Kuz’min

Ph.D. (Techn.), Head of Strength Reliability of Equipment and Pipelines at Nuclear Power Plants Dept., All-Russian Research Institute for Nuclear Power Plants Operation, e-mail: DAKuzmin@vniiaes.ru

Aleksandr Yu. Kuz’michevskiy

Ph.D. (Techn.), Head of Strength Reliability of Equipment and Pipelines at Nuclear Power Plants Dept. for Risk Analysis of the Technical Condition of Equipment and Pipelines at Nuclear Power Plants, All-Russian Research Institute for Nuclear Power Plants Operation, e-mail: AYKuzmichevskiy.ru

Daniil D. Levchenko

инженер департамента прочностной надежности оборудования и трубопроводов атомных электростанций Всероссийского научно-исследовательского института по эксплуатации атомных электростанций, e-mail: DDLevchenko@vniiaes.ru

Oleg S. Tolkachev

Engineer of the 1st Category in Strength Reliability of Equipment and Pipelines at Nuclear Power Plants Dept., All-Russian Research Institute for Nuclear Power Plants Operation, e-mail: OSTolkachev@vniiaes.ru

References

1. НП-089—15. Правила устройства и безопасной эксплуатации оборудования и трубопроводов атомных энергетических установок.

2. ASME Boiler & Pressure Vessel Code Div. XI. Rules for Inservice Inspection of Nuclear Power Plant Components. N.-Y.: American Soc. Mechanical Engineers, 2023.

3. Multinational Design Evaluation Programme Techn. Rep. TR-CSWG-04. The Essential Performance Guidelines for the Design and Construction of Pressure Boundary Components. N.-Y.: Nuclear Energy Agency, 2015.

4. Multinational Design Evaluation Programme Techn. Rep. TR-CSWG-03. Fundamental Attributes for the Design and Construction of Reactor Coolant Pressure Boundary Components. N.-Y.: Nuclear Energy Agency, 2014.

5. Multinational Design Evaluation Programme Generic Common Position CP-CSWG-01. Common Position on Findings from Code Comparisons and Establishment of a Global Framework towards Pressure-Boundary Code Harmonisation. N.-Y.: Nuclear Energy Agency, 2013.

6. Zhen-Guo Zhang. The Important Reference Factors of Nuclear Vessel Hydrostatic Test. Shenzhen: Suzhou Nuclear Power Research Institute, 2016.

7. ВН 39-1.9-004—98. Инструкция по проведению гидравлических испытаний трубопроводов повышенным давлением (методом стресс-теста).

8. Федеральные нормы и правила в области промышленной безопасности. Правила безопасности в нефтяной и газовой промышленности. М.: Федеральная служба по экологическому, технологическому и атомному надзору, 2020.

9. РД 153-34.0-20.522—99. Типовая инструкция по периодическому техническому освидетельствованию трубопроводов тепловых сетей в процессе эксплуатации.

10. Типовая инструкция по технической эксплуатации тепловых сетей систем коммунального теплоснабжения. М.: Государственный комитет Российской Федерации по строительству и жилищно-коммунальному комплексу, 2000.

11. ГОСТ 3845—2017. Трубы металлические. Метод испытания внутренним гидростатическим давлением.

12. Григорьев В.А., Пиминов В.А., Шарый Н.В. Обоснование возможности уменьшения давления и увеличения периода гидравлических испытаний первого контура РУ с ВВЭР // Обеспечение безопасности АЭС с ВВЭР: Сб. трудов IV Междунар. науч.-техн. конф. Подольск: ОКБ «Гидропресс», 2005. С. 87—100.

13. ОТР-Н.1234.03-235.14. Об изменении параметров гидравлических испытаний на прочность первого контура энергоблоков АЭС с РУ ВВЭР-1000/В-320.

14. IAEA. Fundamental Safety Principles. Vienna, 2006.

15. IAEA. A Framework for an Integrated Risk Informed Decision Making Process. Vienna, 2011.

16. IAEA. Safety Assessment for Facilities and Activities. Vienna, 2016

17. Техническое обслуживание, надзор и инспекции при эксплуатации на атомных электростанциях. Вена, 2005.

18. Orynyak I. e. a. Justification of Hydraulic Test Pressure Reduction for Npps Primary Circuit Using Structural Reliability Approach // Proc. Structural Mechanics in Reactor Technol., Manchester, 2015. Pp. 1—10.

19. Orynyak I. e. a. Application of the Structural Reliability Methods for Justification of Pressure Reduction of Periodic Hydrostatic Test for Primary Circuit of NPP WWER-1000 // Proc. ASME Pressure Vessels and Piping Conf. Boston, 2015.

20. Orynyak I. e. a. The Method for Structural Reliability Estimation of the Heat Exchanger Tubes of Steam Generator of WWER NPPs // Proc. ASME Pressure Vessels and Piping Conf. Vancouver, 2016.

21. EPRI Topical Rep. TR-112657 Rev. B-A. Revised Risk-informed Inservice Inspection Evaluation Procedure. Palo Alto: Electric Power Research Institute, 1999.

---

Для цитирования: Потапов В.В., Кузьмин Д.А., Кузьмичевский А.Ю., Левченко Д.Д., Толкачев О.С. Обзор подходов к выбору минимального давления гидравлических испытаний оборудования и трубопроводов АЭС // Вестник МЭИ. 2025. № 6. С. 146—154. DOI: 10.24160/1993-6982-2025-6-146-154

---

Конфликт интересов: авторы заявляют об отсутствии конфликта интересов

#

1. NP-089—15. Pravila Ustroystva i Bezopasnoy Ekspluatatsii Oborudovaniya i Truboprovodov Atomnykh Energeticheskikh Ustanovok. (in Russian).

2. ASME Boiler & Pressure Vessel Code Div. XI. Rules for Inservice Inspection of Nuclear Power Plant Components. N.-Y.: American Soc. Mechanical Engineers, 2023.

3. Multinational Design Evaluation Programme Techn. Rep. TR-CSWG-04. The Essential Performance Guidelines for the Design and Construction of Pressure Boundary Components. N.-Y.: Nuclear Energy Agency, 2015.

4. Multinational Design Evaluation Programme Techn. Rep. TR-CSWG-03. Fundamental Attributes for the Design and Construction of Reactor Coolant Pressure Boundary Components. N.-Y.: Nuclear Energy Agency, 2014.

5. Multinational Design Evaluation Programme Generic Common Position CP-CSWG-01. Common Position on Findings from Code Comparisons and Establishment of a Global Framework towards Pressure-Boundary Code Harmonisation. N.-Y.: Nuclear Energy Agency, 2013.

6. Zhen-Guo Zhang. The Important Reference Factors of Nuclear Vessel Hydrostatic Test. Shenzhen: Suzhou Nuclear Power Research Institute, 2016.

7. VN 39-1.9-004—98. Instruktsiya po Provedeniyu Gidravlicheskikh Ispytaniy Truboprovodov Povyshennym Davleniem (Metodom Stress-testa). (in Russian).

8. Federal'nye Normy i Pravila v Oblasti Promyshlennoy Bezopasnosti. Pravila Bezopasnosti v Neftyanoy i Gazovoy Promyshlennosti. M.: Federal'naya Sluzhba po Ekologicheskomu, Tekhnologicheskomu i Atomnomu Nadzoru, 2020. (in Russian).

9. RD 153-34.0-20.522—99. Tipovaya Instruktsiya po Periodicheskomu Tekhnicheskomu Osvidetel'stvovaniyu Truboprovodov Teplovykh Setey v Protsesse Ekspluatatsii. (in Russian).

10. Tipovaya Instruktsiya Po Tekhnicheskoy Ekspluatatsii Teplovykh Setey Sistem Kommunal'nogo Teplosnabzheniya. M.: Gosudarstvennyy Komitet Rossiyskoy Federatsii po Stroitel'stvu i Zhilishchno-Kommunal'nomu Kompleksu, 2000. (in Russian).

11. GOST 3845—2017. Truby Metallicheskie. Metod Ispytaniya Vnutrennim Gidrostaticheskim Davleniem. (in Russian).

12. Grigor'ev V.A., Piminov V.A., Sharyy N.V. Obosnovanie Vozmozhnosti Umen'sheniya Davleniya i Uvelicheniya Perioda Gidravlicheskikh Ispytaniy Pervogo Kontura RU s VVER. Obespechenie Bezopasnosti AES s VVER: Sb. Trudov IV Mezhdunar. Nauch.-tekhn. konf. Podol'sk: OKB «Gidropress», 2005:87—100. (in Russian).

13. OTR-N.1234.03-235.14. Ob Izmenenii Parametrov Gidravlicheskikh Ispytaniy na Prochnost' Pervogo Kontura Energoblokov AES s RU VVER-1000/V-320. (in Russian).

14. IAEA. Fundamental Safety Principles. Vienna, 2006.

15. IAEA. A Framework for an Integrated Risk Informed Decision Making Process. Vienna, 2011.

16. IAEA. Safety Assessment for Facilities and Activities. Vienna, 2016

17. Tekhnicheskoe Obsluzhivanie, Nadzor i Inspektsii pri Ekspluatatsii na Atomnykh Elektrostantsiyakh. Vena, 2005. (in Russian).

18. Orynyak I. e. a. Justification of Hydraulic Test Pressure Reduction for Npps Primary Circuit Using Structural Reliability Approach. Proc. Structural Mechanics in Reactor Technol., Manchester, 2015:1—10.

19. Orynyak I. e. a. Application of the Structural Reliability Methods for Justification of Pressure Reduction of Periodic Hydrostatic Test for Primary Circuit of NPP WWER-1000. Proc. ASME Pressure Vessels and Piping Conf. Boston, 2015.

20. Orynyak I. e. a. The Method for Structural Reliability Estimation of the Heat Exchanger Tubes of Steam Generator of WWER NPPs. Proc. ASME Pressure Vessels and Piping Conf. Vancouver, 2016.

21. EPRI Topical Rep. TR-112657 Rev. B-A. Revised Risk-informed Inservice Inspection Evaluation Procedure. Palo Alto: Electric Power Research Institute, 1999

---

For citation: Potapov V.V., Kuz’min D.A., Kuz’michevskiy A.Yu., Levchenko D.D., Tolkachev O.S. Overview of Approaches to the Selection of Minimum Hydrostatic Test Pressure for Nuclear Power Plant Equipment and Pipelines. Bulletin of MPEI. 2025;6:146—154. (in Russian). DOI: 10.24160/1993-6982-2025-6-146-154

---

Conflict of interests: the authors declare no conflict of interest

Published

2025-12-26

Issue

Section

Nuclear Power Plants, Fuel Cycle, Radiation Safety (Technical Sciences) (2.4.9)