Analysis of Modern Approaches to Modeling the Behavior of Radioactive Aerosols in the Reactor Plant Primary Circuit during a Severe Accident at an NPP with VVER

Authors

  • Egor S. Sarychev
  • Yuriy B. Shmel’kov
  • Vladimir I. Melikhov

DOI:

https://doi.org/10.24160/1993-6982-2025-6-155-170

Keywords:

severe accident, aerosols, primary circuit, fission products, experiments, computer codes

Abstract

Russian and international regulatory documents, such as the provisions of Rostekhnadzor and IAEA recommendations, establish requirements for conducting realistic (non-conservative) analyses of severe accidents (SA) to justify the nuclear power plant (NPP) safety. One of the key aspects in assessing the NPP radiation safety is the analysis of radioactive releases resulting from SAs, which entail the formation and transport of radioactive fission products (FP) within the primary circuit and the reactor containment. The article presents a detailed analysis of the phenomenology of processes occurring in the reactor plant (RP) primary circuit under SA conditions, including the chemical and physical aspects of FP behavior. Special attention is paid to the aerosol condensation, evaporation, deposition, and transport processes, as well as aerosol growth and re-suspension processes. Modern local experiments and integral programs, such as PHEBUS, STORM, FALCON, and MARVIKEN, which provide data for the validation of computational models, are reviewed. Specialized software tools, such as MELCOR, ASTEC, SOCRAT, and MAVR-TA, used for modeling the behavior of aerosols and FP vapors, are considered. The main challenges of modern software tools have been identified, including insufficiently accurate description of aerosol deposition processes, limitations in models of chemical interactions between FP and primary circuit materials, and difficulties in accounting for FP behavior in turbulent flows. The analysis results testify the need for further improvement of computational methods and models to enhance the reliability of predicting the consequences of severe accidents at NPPs.

Author Biographies

Egor S. Sarychev

Ph.D.-student of Nuclear Power Plants Dept., NRU MPEI; Junior Research Assistant, NRC «Kurchatov Institute», e-mail: Sarychev_ES@nrcki.ru

Yuriy B. Shmel’kov

Dr.Sci. (Techn.), Head of Emergency Management Dept., NRC «Kurchatov Institute»

Vladimir I. Melikhov

Dr.Sci. (Techn.), Professor of Nuclear Power Plants Dept., NRU MPEI

References

1. IAEA. Deterministic Safety Analysis for Nuclear Power Plants: Specific Safety Guide: IAEA Safety Standards Series. Vienna: IAEA, 2019.

2. НП-001—15. Общие положения обеспечения безопасности атомных станций.

3. Kissane M.P. On the Nature of Aerosols Produced During a Severe Accident of a Water-cooled Nuclear Reactor // Nuclear Eng. and Design. 2008. V. 238(10). Pp. 2792—2800.

4. Wang M. e. a. Review of Fission Gas Release in Liquid Metal Reactor Fuel Cladding Failure Accident // Nuclear Eng. and Design. 2024. V. 419. P. 112981.

5. Jafarikia S., Feghhi S.A.H. Contribution of Production and Loss Terms of Fission Products on In-containment Activity under Severe Accident Condition for VVER-1000 // Nuclear Eng. and Technol. 2019. V. 51(1). Pp. 125—137.

6. Sehgal B.R. Nuclear Safety in Light Water Reactors: Severe Accident Phenomenology. Waltham: Academican Press, 2012.

7. Gouello M., Mutelle H., Cousin F., Sobanska S., Blanquet E. Analysis of the iodine gas phase produced by interaction of CsI and MoO3 vapours in flowing steam // Nuclear Engineering and Design. 2013. № 263. Pp. 462-472.

8. Gallais-During A. e. a. Overview of the VERDON-ISTP Program and Main Insights from the VERDON-2 Air Ingress Test // Annals of Nuclear Energy. 2017. V. 101. Pp. 109—117.

9. Pontillon Y., Ducros G., Malgouyres P.P. Behaviour of Fission Products under Severe PWR Accident Conditions. The VERCORS Experimental Programme — Part 1: General Description of the Programme // Nuclear Eng. and Design. 2010. V. 240(7). Pp. 1843—1852.

10. Pontillon Y., Ducros G. Behaviour of Fission Products under Severe PWR Accident Conditions. The VERCORS Experimental Programme — Part 2: Release and Transport of Fission Gases and Volatile Fission Products // Ibid. Pp. 1853—1866.

11. Pontillon Y., Ducros G. Behaviour of Fission Products under Severe PWR Accident Conditions. The VERCORS Experimental Programme — Part 3: Release of Low-volatile Fission Products and Actinides // Ibid. Pp. 1867—1881.

12. Miwa S. e. a. Development of Fission Product Chemistry Database ECUME for the LWR Severe Accident // Mechanical Eng. J. 2020. V. 7(3). P. 19-00537.

13. Gouëllo M., Hokkinen J., Kärkelä T. Advances in the Understanding of Molybdenum Effect on Iodine and Caesium Reactivity in Condensed Phase in the Primary Circuit in Nuclear Severe Accident Conditions // Nuclear Eng. and Technol. 2020. V. 52(8). Pp. 1638—1649.

14. Di Lemma F.G. e. a. A Separate Effect Study of the Influence of Metallic Fission Products on CSI Radioactive Release from Nuclear Fuel // J. Nuclear Materials. 2015. V. 465. Pp. 499—508.

15. Bottomley P.D.W. e. a. Revaporisation of Fission Product Deposits in the Primary Circuit and Its Impact on Accident Source Term // Annals of Nuclear Energy. 2014. V. 74. Pp. 208—223.

16. Le Fessant E. e. a. ToF-SIMS and XPS Characterizations of Model Fission Products (I, Cs) Deposits after Thermal Treatment Simulating Late Phase Conditions of a Nuclear Power Plant Severe Accident // Proc. EPJ Web Conf. 2022. V. 273. P. 01004.

17. Kalilainen J. Fission Product Transport in the Primary Circuit and in the Containment in Severe Nuclear Accidents: Doctoral Dissertation. Aalto University Publ. Series, 2015.

18. Shibazaki H. e. a. Experimental Study on Effects of Boric Acid on Aerosol Revoparization in WIND Project // Proc. Workshop Severe Accident Research. Tokyo, 1999. Pp. 225—230.

19. Circuit and Containment Aspects of PHÉBUS Experiments FPT0 and FPT1: Consolidated Interpretation Report. Circuit and Containment Aspects of PHÉBUS Experiments FPT0 and FPT1. European Commission. Joint Research Centre. Institute for Energy and Transport, 2015.

20. Lind T. e. a. A Summary of the ARTIST: Aerosol Retention During SGTR Severe Accident // Annals of Nuclear Energy. 2019. V. 131. Pp. 385—400.

21. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. N.-Y.: John Wiley & Sons, 2016.

22. Pruppacher H.R., Klett J.D. Microphysics of Clouds and Precipitation. Dordrecht: Springer Netherlands, 2010. V. 18.

23. Cousin F., Kissane M.P., Girault N. Modelling of Fission-product Transport in the Reactor Coolant System // Annals of Nuclear Energy. 2013. V. 61. Pp. 135—142.

24. Williams M.M.R, Loyalka S.K. Aerosol Science: Theory and Practice; with Special Applications to the Nuclear Industry. N.-Y.: Pergamon Press, 1991.

25. Lind T. e. a. A summary of Fission-product-transport Phenomena During SGTR Severe Accidents // Nuclear Eng. and Design. 2020. V. 363. P. 110635.

26. Lowe A. e. a. Fragmentation Dynamics of Single Agglomerate-to-wall Impaction // Power Technol. 2021. V. 378. Pp. 561—575.

27. Yoon C., Lim H.S. Development and Validation of the Aerosol Transport Module GAMMA-FP for Evaluating Radioactive Fission Product Source Terms in a VHTR // Nuclear Eng. and Technol. 2014. V. 46(6). Pp. 825—836.

28. Morandi S., Parozzi F., Auvinen A. Possible Improvements of the Aerosol Resuspension Model of ECART in the Light of VTT Tests // Proc. Intern. Aerosol Conf., 2010.

29. Kissane M.P., Abkari N., Ait-Ammi M. A Study of Models and Experiments Involving Aerosol Impaction in Bends, Changes of Cross-Section and Simple Junctions // J. Aerosol Sci. 1994. V. 25(1). Pp. 453—454.

30. Li J. e. a. Development and Validation of an Aerosol Transport Module in the Primary Circuit for Evaluating the Retention of Fission Product Particles Released During Severe Accidents in Nuclear Power Plants // Nuclear Eng. and Technol. 2024. V. 57(1—2). P. 103374.

31. Ye Y., Pui D.Y.H. Particle Deposition in a Tube with an Abrupt Contraction // J. Aerosol Sci. 1990. V. 21(1). Pp. 29—40.

32. Chen D.R., Pui D.Y.H. Numerical and Experimental Studies of Particle Deposition in a Tube with a Conical Contraction Laminar Flow Regime // J. Aerosol Sci. 1995. V. 26(4). Pp. 563—574.

33. Clement C.F., Harrison R.G. Enhanced Localized Charging Of Radioactive Aerosols // J. Aerosol Sci. 2000. V. 31(3). Pp. 363—378.

34. Gensdarmes F., Bouland D., Renoux A. Electrical Charging of Radioactive Aerosols — Comparison of the Clement–Harrison Models with New Experiments // J. Aerosol Sci. 2001. V. 3(12). Pp. 1437—1458.

35. Williams D.A. OECD International Standard Problem Number 34-Falcon Code Comparison Repo. AEA Technology, 1994.

36. Kmetyk L.N. MELCOR 1.8.1 Assessment: Marviken-V Aerosol Transport Tests ATT-2b/ATT-4. Sandia National Laboratories, 1993.

37. Haste T., Payot F., Bottomley P.D.W. Transport and Deposition in the Phébus FP Circuit // Annals of Nuclear Energy. 2013. V. 61. Pp. 102—121.

38. Girault N., Payot F. Insights into Iodine Behavior and Speciation in the Phebus Primary Circuit // Ibid. Pp. 143–156.

39. Dwivedi A.K. e. a. Aerosol Depositional Characteristics in Piping Assembly under Varying Flow Conditions // Progress in Nuclear Energy. 2019. V. 116. Pp. 148—157.

40. Hidaka A. e. a. Experimental and Analytical Study on Aerosol Behavior in WIND Project // Nuclear Eng. and Design. 2000. V. 200. Pp. 303—315.

41. Rahn F.J., Collén J., Wright A.L. Aerosol Behavior Experiments on Light Water Reactor Primary Systems // Nuclear Technol. 1988. V. 81(2). Pp. 158—182.

42. Clément B., Haste T. Comparison Report on International Standard Problem ISP-46 (Phebus FPT-1). NT SEMAR 03/021 Revision 3, 2003.

43. Tsai C.J., Lin J.S., Aggarwal S.G., Chen D.R. Thermophoretic Deposition of Particles in Laminar and Turbulent Tube Flows // Aerosol Sci. and Technol. 2004. V. 38. Pp. 131—139.

44. Housiadas C., Drossinos Y. Thermophoretic Deposition in Tube Flow // Aerosol Sci. and Technol. 2005. V. 39. Pp. 304—318.

45. Okuyama K., Kousaka Ya., Kida Yo., Yoshida T. Turbulent Coagulation of Aerosols in a Stirred Tank. // J. Chem. Eng. of Japan. 1977. V. 10(2). Pp. 142—147.

46. Kim D.S. e. a. Brownian Coagulation of Polydisperse Aerosols in the Transition Regime // Aerosol Sci. 2003. V. 34. Pp. 859—868.

47. Zoulalian A., Albiol T. Evaluation des Dépôts D’aérosols par Thermo et Diffusiophorèse Lors de L’ecoulement Dans une Conduite Cylindrique — Applications Aux Essais Tuba Diffusiophorèse // Can. J. Chem Eng. 1998. V. 76(4). Pp. 799—805.

48. Makynen J.M., e. a. AHMED Experiments on Hygroscopic and Inert Aerosol Behavior in LWR Containment Conditions: Experimental Results // Nuclear Eng. and Design. 1997. V. 178. Pp. 45—59.

49. Drosik I., Martin F., Dumaz P. Analysis of AERODEVAP Experiments with the SOPHAEROS Computer Code // J. Aerosol Sci. 1995. V. 26. Pp. 709—710.

50. Grégoire A.C., Mutelle H. Experimental Study of the [B, Cs, I, O, H] and [Mo, Cs, I, O, H] Systems in the Primary Circuit of a PWR in Conditions Representative of a Severe Accident // Proc. XXI Intern. Conf. Nuclear Energy for New Europe. Ljubljana, 2012. Pp. 4—7.

51. Ball M.H.E., Mitchell J.P. The Deposition of Micron-sized Particles in Bends of Large Diameter Pipes // J. Aerosol Sci. 1992. V. 23. Pp. 23—26.

52. Verloo E. e. a. Study of Aerosol Deposition in Large Pipes: TRANSAT programme // J. Aerosol Sci. 1996. V. 27. Pp. 453—454.

53. Castelo A., Capitão J.A., Santi G. International Standard Problem 40 – Aerosol Deposition and Resuspension. NEA/CSNI/R(99)4. EUR 18708 EN, 1999.

54. Paci S. e. a. ECART Analysis of the STARDUST Dust Resuspension Tests with an Obstacle Presence // Fusion Eng. and Design. 2019. V. 146. Pp. 2—5.

55. Cantrel L. e. a. ASTEC V2 Severe Accident Integral Code: Fission Product Modelling and Validation // Nuclear Eng. and Design. 2014. V. 272. Pp. 195—206.

56. Cousin F., Dieschbourg K., Jacq F. New Capabilities of Simulating FP Transport in Circuits with ASTEC/SOPHAEROS v1.3 // Nuclear Eng. and Design. 2008. V. 239. Pp. 2430—2438.

57. Humphries L.L. e. a. MELCOR Computer Code Manuals. Volume 1: Primer and Users Guide — Version 2.2.9541: SAND2017-0455 O. Albuquerque: Sandia National Laboratories, 2017.

58. Долганов К.С. и др. Оперативный расчет аварии на АЭС «Фукусима-1» (Япония) с помощью кода СОКРАТ // Атомная энергия. 2013. Т. 114(3) С. 133—139.

59. Аввакумов А.В. и др. Верификация расчетного комплекса СОКРАТ/В3 // Обеспечение безопасности АЭС с ВВЭР: Материалы VI Междунар. науч.-техн. конф. Подольск: ОКБ «Гидропресс», 2009.

60. Шмельков Ю.Б., Звонарев Ю.А., Петров Л.В., Шутов Н.В. Разработка и верификация кода МАВР-ТА для моделирования выхода продуктов деления и их переноса под защитной оболочкой при тяжёлой аварии на АЭС с ВВЭР // Вопросы атомной науки и техники. Серия «Физика ядерных реакторов». 2018. № 5. С. 92—104.

61. Shmelkov Yu.B., Zvonarev Yu.A., Shutov N.V., Petrov L.V. Development and Validation of the MAVR-TA Code for Analyzing the Release and Transport of Fission Products During a Severe Accident at a Nuclear Power Plant with VVER. Part 1 — Release of Fission Products from a Fuel // Nuclear Eng. and Design. 2021. V. 385. P. 111407.

62. Shmelkov Yu.B., Zvonarev Yu.A., Shutov N.V., Petrov L.V. Development and Validation of the MAVR-TA Code for Analyzing the Release and Transport of Fission Products During a Severe Accident at a VVER NPP. Part 2 — Modelling of the Fission Products Transport in the Primary Circuit and Inside the Containment // Nuclear Eng. and Design. 2021. V. 382. P. 111377.

63. Heames T.J. e. a. VICTORIA: A Mechanistic Model of Radionuclide Behavior in the Reactor Coolant System under Severe Accident Conditions. Albuquerque: Sandia National Laboratories, 1990.

64. Arani M.K., Esteki M.H., Ayoobian N. Validation of STRCS Code for Calculation of Fission-product Transport in Reactor Coolant System During Severe Accidents // Annals of Nuclear Energy. 2018. V. 114. Pp. 206— 213.

65. Vechgama W. Investigation of Differences of Phenomena of Diffusiophoresis and Thermophoresis from Aerosol Deposition in Modified ART Mod 2 Code // J. Phys.: Conf. Ser. 2019. V. 1285(1). P. 012042.

66. Mohanarangam K., Tian Z.F., Tu J.Y. Numerical Simulation of Turbulent Gas–particle Flow in a 90° Vend: Eulerian–Eulerian Approach // Computers & Chemical Eng. 2008. V. 32(3). Pp. 561— 571.

67. Parker S., Foat T., Preston S. Towards Quantitative Prediction of Aerosol Deposition from Turbulent Flows // J. Aerosol Sci. 2008. V. 39(2). Pp. 99—112.

68. Rostami A.A. Computational Modeling of Aerosol Deposition in Respiratory Tract: a Review // Inhalation Toxicology. 2009. V. 21(4). Pp. 262— 290.

69. Lucci F., Frederix E., Kuczaj A.K. AeroSolved: Computational Fluid Dynamics Modeling of Multispecies Aerosol Flows with Sectional and Moment Methods // J. Aerosol Sci. 2022. V. 159. P. 105854.

70. He Yi., Bayly A.E., Hassanpour A. Coupling CFD-DEM with Dynamic Meshing: a New Approach for Fluid-Structure Interaction in Particle-fluid Flows // Power Technol. 2018. V. 325. Pp. 620— 631.

---

Для цитирования: Сарычев Е.С., Шмельков Ю.Б., Мелихов В.И. Анализ современных подходов к моделированию поведения радиоактивных аэрозолей в первом контуре реакторной установки при тяжелой аварии на АЭС с ВВЭР // Вестник МЭИ. 2025. № 6. С. 155—170. DOI: 10.24160/1993-6982-2025-6-155-170

---

Конфликт интересов: авторы заявляют об отсутствии конфликта интересов

#

1. IAEA. Deterministic Safety Analysis for Nuclear Power Plants: Specific Safety Guide: IAEA Safety Standards Series. Vienna: IAEA, 2019.

2. NP-001—15. Obshchie Polozheniya Obespecheniya Bezopasnosti Atomnykh Stantsiy. (in Russian).

3. Kissane M.P. On the Nature of Aerosols Produced During a Severe Accident of a Water-cooled Nuclear Reactor. Nuclear Eng. and Design. 2008;238(10):2792—2800.

4. Wang M. e. a. Review of Fission Gas Release in Liquid Metal Reactor Fuel Cladding Failure Accident. Nuclear Eng. and Design. 2024;419:112981.

5. Jafarikia S., Feghhi S.A.H. Contribution of Production and Loss Terms of Fission Products on In-containment Activity under Severe Accident Condition for VVER-1000. Nuclear Eng. and Technol. 2019;51(1):125—137.

6. Sehgal B.R. Nuclear Safety in Light Water Reactors: Severe Accident Phenomenology. Waltham: Academican Press, 2012.

7. Gouello M., Mutelle H., Cousin F., Sobanska S., Blanquet E. Analysis of the iodine gas phase produced by interaction of CsI and MoO3 vapours in flowing steam. Nuclear Engineering and Design. 2013. № 263:462-472.

8. Gallais-During A. e. a. Overview of the VERDON-ISTP Program and Main Insights from the VERDON-2 Air Ingress Test. Annals of Nuclear Energy. 2017;101:109—117.

9. Pontillon Y., Ducros G., Malgouyres P.P. Behaviour of Fission Products under Severe PWR Accident Conditions. The VERCORS Experimental Programme — Part 1: General Description of the Programme. Nuclear Eng. and Design. 2010;240(7):1843—1852.

10. Pontillon Y., Ducros G. Behaviour of Fission Products under Severe PWR Accident Conditions. The VERCORS Experimental Programme — Part 2: Release and Transport of Fission Gases and Volatile Fission Products. Ibid:1853—1866.

11. Pontillon Y., Ducros G. Behaviour of Fission Products under Severe PWR Accident Conditions. The VERCORS Experimental Programme — Part 3: Release of Low-volatile Fission Products and Actinides. Ibid:1867—1881.

12. Miwa S. e. a. Development of Fission Product Chemistry Database ECUME for the LWR Severe Accident. Mechanical Eng. J. 2020;7(3):19-00537.

13. Gouëllo M., Hokkinen J., Kärkelä T. Advances in the Understanding of Molybdenum Effect on Iodine and Caesium Reactivity in Condensed Phase in the Primary Circuit in Nuclear Severe Accident Conditions. Nuclear Eng. and Technol. 2020;52(8):1638—1649.

14. Di Lemma F.G. e. a. A Separate Effect Study of the Influence of Metallic Fission Products on CSI Radioactive Release from Nuclear Fuel. J. Nuclear Materials. 2015;465:499—508.

15. Bottomley P.D.W. e. a. Revaporisation of Fission Product Deposits in the Primary Circuit and Its Impact on Accident Source Term. Annals of Nuclear Energy. 2014;74:208—223.

16. Le Fessant E. e. a. ToF-SIMS and XPS Characterizations of Model Fission Products (I, Cs) Deposits after Thermal Treatment Simulating Late Phase Conditions of a Nuclear Power Plant Severe Accident. Proc. EPJ Web Conf. 2022;273:01004.

17. Kalilainen J. Fission Product Transport in the Primary Circuit and in the Containment in Severe Nuclear Accidents: Doctoral Dissertation. Aalto University Publ. Series, 2015.

18. Shibazaki H. e. a. Experimental Study on Effects of Boric Acid on Aerosol Revoparization in WIND Project. Proc. Workshop Severe Accident Research. Tokyo, 1999:225—230.

19. Circuit and Containment Aspects of PHÉBUS Experiments FPT0 and FPT1: Consolidated Interpretation Report. Circuit and Containment Aspects of PHÉBUS Experiments FPT0 and FPT1. European Commission. Joint Research Centre. Institute for Energy and Transport, 2015.

20. Lind T. e. a. A Summary of the ARTIST: Aerosol Retention During SGTR Severe Accident. Annals of Nuclear Energy. 2019;131:385—400.

21. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. N.-Y.: John Wiley & Sons, 2016.

22. Pruppacher H.R., Klett J.D. Microphysics of Clouds and Precipitation. Dordrecht: Springer Netherlands, 2010;18.

23. Cousin F., Kissane M.P., Girault N. Modelling of Fission-product Transport in the Reactor Coolant System. Annals of Nuclear Energy. 2013;61:135—142.

24. Williams M.M.R, Loyalka S.K. Aerosol Science: Theory and Practice; with Special Applications to the Nuclear Industry. N.-Y.: Pergamon Press, 1991.

25. Lind T. e. a. A summary of Fission-product-transport Phenomena During SGTR Severe Accidents. Nuclear Eng. and Design. 2020;363:110635.

26. Lowe A. e. a. Fragmentation Dynamics of Single Agglomerate-to-wall Impaction. Power Technol. 2021;378:561—575.

27. Yoon C., Lim H.S. Development and Validation of the Aerosol Transport Module GAMMA-FP for Evaluating Radioactive Fission Product Source Terms in a VHTR. Nuclear Eng. and Technol. 2014;46(6):825—836.

28. Morandi S., Parozzi F., Auvinen A. Possible Improvements of the Aerosol Resuspension Model of ECART in the Light of VTT Tests. Proc. Intern. Aerosol Conf., 2010.

29. Kissane M.P., Abkari N., Ait-Ammi M. A Study of Models and Experiments Involving Aerosol Impaction in Bends, Changes of Cross-Section and Simple Junctions. J. Aerosol Sci. 1994;25(1):453—454.

30. Li J. e. a. Development and Validation of an Aerosol Transport Module in the Primary Circuit for Evaluating the Retention of Fission Product Particles Released During Severe Accidents in Nuclear Power Plants. Nuclear Eng. and Technol. 2024;57(1—2):103374.

31. Ye Y., Pui D.Y.H. Particle Deposition in a Tube with an Abrupt Contraction. J. Aerosol Sci. 1990;21(1):29—40.

32. Chen D.R., Pui D.Y.H. Numerical and Experimental Studies of Particle Deposition in a Tube with a Conical Contraction Laminar Flow Regime. J. Aerosol Sci. 1995;26(4):563—574.

33. Clement C.F., Harrison R.G. Enhanced Localized Charging Of Radioactive Aerosols. J. Aerosol Sci. 2000;31(3):363—378.

34. Gensdarmes F., Bouland D., Renoux A. Electrical Charging of Radioactive Aerosols — Comparison of the Clement–Harrison Models with New Experiments. J. Aerosol Sci. 2001;3(12):1437—1458.

35. Williams D.A. OECD International Standard Problem Number 34-Falcon Code Comparison Repo. AEA Technology, 1994.

36. Kmetyk L.N. MELCOR 1.8.1 Assessment: Marviken-V Aerosol Transport Tests ATT-2b/ATT-4. Sandia National Laboratories, 1993.

37. Haste T., Payot F., Bottomley P.D.W. Transport and Deposition in the Phébus FP Circuit. Annals of Nuclear Energy. 2013;61:102—121.

38. Girault N., Payot F. Insights into Iodine Behavior and Speciation in the Phebus Primary Circuit. Ibid:143–156.

39. Dwivedi A.K. e. a. Aerosol Depositional Characteristics in Piping Assembly under Varying Flow Conditions. Progress in Nuclear Energy. 2019;116:148—157.

40. Hidaka A. e. a. Experimental and Analytical Study on Aerosol Behavior in WIND Project. Nuclear Eng. and Design. 2000;200:303—315.

41. Rahn F.J., Collén J., Wright A.L. Aerosol Behavior Experiments on Light Water Reactor Primary Systems. Nuclear Technol. 1988;81(2):158—182.

42. Clément B., Haste T. Comparison Report on International Standard Problem ISP-46 (Phebus FPT-1). NT SEMAR 03/021 Revision 3, 2003.

43. Tsai C.J., Lin J.S., Aggarwal S.G., Chen D.R. Thermophoretic Deposition of Particles in Laminar and Turbulent Tube Flows. Aerosol Sci. and Technol. 2004;38:131—139.

44. Housiadas C., Drossinos Y. Thermophoretic Deposition in Tube Flow. Aerosol Sci. and Technol. 2005;39:304—318.

45. Okuyama K., Kousaka Ya., Kida Yo., Yoshida T. Turbulent Coagulation of Aerosols in a Stirred Tank.. J. Chem. Eng. of Japan. 1977;10(2):142—147.

46. Kim D.S. e. a. Brownian Coagulation of Polydisperse Aerosols in the Transition Regime. Aerosol Sci. 2003;34:859—868.

47. Zoulalian A., Albiol T. Evaluation des Dépôts D’aérosols par Thermo et Diffusiophorèse Lors de L’ecoulement Dans une Conduite Cylindrique — Applications Aux Essais Tuba Diffusiophorèse. Can. J. Chem Eng. 1998;76(4):799—805.

48. Makynen J.M., e. a. AHMED Experiments on Hygroscopic and Inert Aerosol Behavior in LWR Containment Conditions: Experimental Results. Nuclear Eng. and Design. 1997;178:45—59.

49. Drosik I., Martin F., Dumaz P. Analysis of AERODEVAP Experiments with the SOPHAEROS Computer Code. J. Aerosol Sci. 1995;26:709—710.

50. Grégoire A.C., Mutelle H. Experimental Study of the [B, Cs, I, O, H] and [Mo, Cs, I, O, H] Systems in the Primary Circuit of a PWR in Conditions Representative of a Severe Accident. Proc. XXI Intern. Conf. Nuclear Energy for New Europe. Ljubljana, 2012:4—7.

51. Ball M.H.E., Mitchell J.P. The Deposition of Micron-sized Particles in Bends of Large Diameter Pipes. J. Aerosol Sci. 1992;23:23—26.

52. Verloo E. e. a. Study of Aerosol Deposition in Large Pipes: TRANSAT programme. J. Aerosol Sci. 1996;27:453—454.

53. Castelo A., Capitão J.A., Santi G. International Standard Problem 40 – Aerosol Deposition and Resuspension. NEA/CSNI/R(99)4. EUR 18708 EN, 1999.

54. Paci S. e. a. ECART Analysis of the STARDUST Dust Resuspension Tests with an Obstacle Presence. Fusion Eng. and Design. 2019;146:2—5.

55. Cantrel L. e. a. ASTEC V2 Severe Accident Integral Code: Fission Product Modelling and Validation. Nuclear Eng. and Design. 2014;272:195—206.

56. Cousin F., Dieschbourg K., Jacq F. New Capabilities of Simulating FP Transport in Circuits with ASTEC/SOPHAEROS v1.3. Nuclear Eng. and Design. 2008;239:2430—2438.

57. Humphries L.L. e. a. MELCOR Computer Code Manuals. Volume 1: Primer and Users Guide — Version 2.2.9541: SAND2017-0455 O. Albuquerque: Sandia National Laboratories, 2017.

58. Dolganov K.S. i dr. Operativnyy Raschet Avarii na AES «Fukusima-1» (Yaponiya) s Pomoshch'yu Koda SOKRAT. Atomnaya Energiya. 2013;114(3):133—139. (in Russian).

59. Avvakumov A.V. i dr. Verifikatsiya Raschetnogo Kompleksa SOKRAT/V3. Obespechenie Bezopasnosti AES s VVER: Materialy VI Mezhdunar. Nauch.-tekhn. Konf. Podol'sk: OKB «Gidropress», 2009. (in Russian).

60. Shmel'kov Yu.B., Zvonarev Yu.A., Petrov L.V., Shutov N.V. Razrabotka i Verifikatsiya Koda MAVR-TA dlya Modelirovaniya Vykhoda Produktov Deleniya i Ikh Perenosa pod Zashchitnoy Obolochkoy pri Tyazheloy Avarii na AES s VVER. Voprosy Atomnoy Nauki i Tekhniki. Seriya «Fizika Yadernykh Reaktorov». 2018;5:92—104. (in Russian).

61. Shmelkov Yu.B., Zvonarev Yu.A., Shutov N.V., Petrov L.V. Development and Validation of the MAVR-TA Code for Analyzing the Release and Transport of Fission Products During a Severe Accident at a Nuclear Power Plant with VVER. Part 1 — Release of Fission Products from a Fuel. Nuclear Eng. and Design. 2021;385:111407.

62. Shmelkov Yu.B., Zvonarev Yu.A., Shutov N.V., Petrov L.V. Development and Validation of the MAVR-TA Code for Analyzing the Release and Transport of Fission Products During a Severe Accident at a VVER NPP. Part 2 — Modelling of the Fission Products Transport in the Primary Circuit and Inside the Containment. Nuclear Eng. and Design. 2021;382:111377.

63. Heames T.J. e. a. VICTORIA: A Mechanistic Model of Radionuclide Behavior in the Reactor Coolant System under Severe Accident Conditions. Albuquerque: Sandia National Laboratories, 1990.

64. Arani M.K., Esteki M.H., Ayoobian N. Validation of STRCS Code for Calculation of Fission-product Transport in Reactor Coolant System During Severe Accidents. Annals of Nuclear Energy. 2018;114:206— 213.

65. Vechgama W. Investigation of Differences of Phenomena of Diffusiophoresis and Thermophoresis from Aerosol Deposition in Modified ART Mod 2 Code. J. Phys.: Conf. Ser. 2019;1285(1):012042.

66. Mohanarangam K., Tian Z.F., Tu J.Y. Numerical Simulation of Turbulent Gas–particle Flow in a 90° Vend: Eulerian–Eulerian Approach. Computers & Chemical Eng. 2008;32(3):561— 571.

67. Parker S., Foat T., Preston S. Towards Quantitative Prediction of Aerosol Deposition from Turbulent Flows. J. Aerosol Sci. 2008;39(2):99—112.

68. Rostami A.A. Computational Modeling of Aerosol Deposition in Respiratory Tract: a Review. Inhalation Toxicology. 2009;21(4):262— 290.

69. Lucci F., Frederix E., Kuczaj A.K. AeroSolved: Computational Fluid Dynamics Modeling of Multispecies Aerosol Flows with Sectional and Moment Methods. J. Aerosol Sci. 2022;159:105854.

70. He Yi., Bayly A.E., Hassanpour A. Coupling CFD-DEM with Dynamic Meshing: a New Approach for Fluid-Structure Interaction in Particle-fluid Flows. Power Technol. 2018;325:620— 631

---

For citation: Sarychev E.S., Shmel’kov Yu.B., Melikhov V.I. Analysis of Modern Approaches to Modeling the Behavior of Radioactive Aerosols in the Reactor Plant Primary Circuit during a Severe Accident at an NPP with VVER. Bulletin of MPEI. 2025;6:155—170. (in Russian). DOI: 10.24160/1993-6982-2025-6-155-170

---

Conflict of interests: the authors declare no conflict of interest

Published

2025-12-26

Issue

Section

Nuclear Power Plants, Fuel Cycle, Radiation Safety (Technical Sciences) (2.4.9)