On the Solvability of a Nonstandard Nonlinear Boundary Value Problem Encountered in Homogenizing a Complex Heat Transfer Problem
DOI:
https://doi.org/10.24160/1993-6982-2025-6-199-205Keywords:
radiative-conductive heat transfer, radiative heat transfer conditions, asymptotic approximations, nonlinear boundary value problemAbstract
In numerous physical and engineering applications, the problem of studying radiative-conductive heat transfer processes is encountered. Thermal radiation exhibits nonlinear dependence on temperature, and its propagation is described by integro-differential equations. This leads to various non-standard nonlinear nonlocal boundary value problems.
The article continues a series of works addressing the construction and analysis of special discrete, semi-discrete, and asymptotic approximations of complex (radiative-conductive) heat transfer problems in small-scale structures consisting of a large number of heat-conductive elements separated by vacuum interlayers or cavities.
A non-standard nonlinear boundary value problem that is encountered in homogenizing certain complex heat transfer problems in periodic structures is considered. The existence of a solution and a comparison principle are proven, from which the uniqueness of the problem solution follows.
References
1. Зигель Р., Хауэлл Дж. Теплообмен излучением. М.: Мир, 1975.
2. Оцисик М.Н. Сложный теплообмен. М.: Мир, 1976.
3. Спэрроу Э.М., Сесс Р.Д. Теплообмен излучением. Л.: Энергия, 1971.
4. Modest F.M. Radiative Heat Transfer. San Diego: Academic Press, 2003.
5. Самарский А.А., Вабищевич П.Н. Вычислительная теплопередача. М.: Едиториал УРСС, 2003.
6. Бахвалов Н.С. Осреднение процесса передачи тепла в периодических средах при наличии излучения // Дифференциальные уравнения. 1981. T. 17. № 10. C. 1765—1773.
7. Бахвалов Н.С., Панасенко Г.П. Осреднение процессов в периодических средах. М.: Наука, 1984.
8. Allaire G., El-Ganaoui K. Homogenization of a Conductive and Radiative Heat Transfer Problem. Simulation with CAST3M // Proc. ASME Summer Heat Transfer Conf. San Francisco, 2005. Pp. 1—6.
9. El-Ganaoui K. Homogénéisation de Modéles de Transfers Thermiques et Radiatifs Dans le Coeur Des Réacteur a Coloporteur Gaz. Ecole Polytechnique X, 2006.
10. Allaire G., El-Ganaoui K. Homogenization of a Conductive and Radiative Heat Transfer Problem // Multiscale Model. Simul. 2009. V. 7. Pp. 1148—1170.
11. Habibi Z. Homogénéisation et Convergence á Deux Échelles lors Déchanges Thermiques Stationnaires et Transitoires, Application aux Coeurs de Réacteurs Nucléaires á Caloporteur Gaz. Ecole Polytechnique, 2011.
12. Allaire G., Habibi Z. Second Order Corrector in the Homogenization of a Conductive-Radiative Heat Transfer Problem // Discrete Contin. Dynam. Systems. Ser. B. 2013. V. 18(1). Pp. 1—36.
13. Allaire G., Habibi Z. Homogenization of a Conductive, Convective, and Radiative Heat Transfer Problem in a Heterogeneous Domain // SIAM J. Math. Anal. 2013. V. 45(3). Pp. 1136—1178.
14. Амосов А.А. Полудискретные и асимптотические приближения к решению задачи переноса тепла в системе экранов при наличии излучения // Современные проблемы математического моделирования: Сб. трудов XII Всеросс. школы-семинара. Ростов-на-Дону: Изд-во РГУ, 2007. С. 21—36.
15. Амосов А.А., Гулин А.В. Полудискретные и асимптотические аппроксимации задачи переноса тепла в системе серых экранов при наличии излучения // Вестник МЭИ. 2008. № 6. С. 5—15.
16. Amosov A.A. Nonstationary Radiative-conductive Heat Transfer Problem in a Periodic System of Grey Heat Shields // J. Math. Sci. 2010. V. 169(1). Pp. 1—45.
17. Amosov A.A. Semidiscrete and Asymptotic Approximations for the Nonstationary Radiative-conductive Heat Transfer Problem in a Periodic System of Grey Heat Shields // J. Math. Sci. 2011. V. 176(3). Pp. 361—408.
18. Кремкова А.А. Полудискретные и асимптотические аппроксимации задачи радиационно-кондуктивного теплообмена в двумерной периодической структуре // Вестник МЭИ. 2012. № 6. С. 151—161.
19. Амосов А.А., Кремкова А.А. Оценка погрешности полудискретного метода решения задачи радиационно-кондуктивного теплообмена в двумерной периодической структуре // Вестник МЭИ. 2013. № 6. С. 22—36.
20. Amosov A.A., Maslov D.A. Semidiscrete Approximations for the Stationary Radiativeconductive Heat Transfer Problem in the Two-dimensional System of Plates // Russ. J. Numer. Anal. Math. Model. 2016. V. 31(1). Pp. 1—17.
21. Amosov A.A. Asymptotic Approximations for the Stationary Radiative-conductive Heat Transfer Problem in a Two-dimensional System of Plates // Russ. J. Numer. Anal. Math. Model. 2017. V. 32(3). Pp. 173—185.
22. Amosov A.A., Krymov N.E. On a Nonstandard Boundary Value Problem Arising in Homogenization of Complex Heat Transfer Problems // J. Math. Sci. 2020. V. 244(3). Pp. 357—377.
23. Amosov A.A., Krymov N.E. Discrete and Asymptotical Approximations for One Stationary Radiative-conductive Heat Transfer Problem // Russ. J. Numer. Anal. Math. Model. 2020. V. 35(3). Pp. 127—141.
24. Amosov A.A., Krymov N.E. Error Estimate for Discrete Approximation of the Radiative-conductive Heat Transfer Problem in a System of Absolutely Black Rods // J. Math. Sci. 2020. V. 251(6). Pp. 773—786.
25. Amosov A.A., Krymov. N.E. On a Nonlinear Initial-boundary Value Problem with Venttsel Type Boundary Conditions Arizing in Homogenization of Complex Heat Transfer Problems // Mathematics. 2022. V. 1890(10). Pp. 1—23.
26. Amosov A.A., Krymov N.E. Justification of Discrete and Asymptotic Approximations for the Complex Heat Transfer Problem // J. Math. Sci. 2022. V. 264(5). Pp. 489—513.
---
Для цитирования: Амосов А.А., Крымов Н.Е. О разрешимости одной нестандартной нелинейной краевой задачи, возникающей при гомогенизации задачи сложного теплообмена // Вестник МЭИ. 2025. № 6. С. 199—205. DOI: 10.24160/1993-6982-2025-6-199-205
---
Результаты работы получены в рамках выполнения государственного задания Министерствa науки и высшего образования Российской Федерации (проект № FSWF-2023-0012)
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Zigel' R., Khauell Dzh. Teploobmen Izlucheniem. M.: Mir, 1975. (in Russian).
2. Otsisik M.N. Slozhnyy Teploobmen. M.: Mir, 1976. (in Russian).
3. Sperrou E.M., Sess R.D. Teploobmen Izlucheniem. L.: Energiya, 1971. (in Russian).
4. Modest F.M. Radiative Heat Transfer. San Diego: Academic Press, 2003.
5. Samarskiy A.A., Vabishchevich P.N. Vychislitel'naya Teploperedacha. M.: Editorial URSS, 2003. (in Russian).
6. Bakhvalov N.S. Osrednenie Protsessa Peredachi Tepla v Periodicheskikh Sredakh pri Nalichii Izlucheniya. Differentsial'nye Uravneniya. 1981;17;10:1765—1773. (in Russian).
7. Bakhvalov N.S., Panasenko G.P. Osrednenie Protsessov v Periodicheskikh Sredakh. M.: Nauka, 1984. (in Russian).
8. Allaire G., El-Ganaoui K. Homogenization of a Conductive and Radiative Heat Transfer Problem. Simulation with CAST3M. Proc. ASME Summer Heat Transfer Conf. San Francisco, 2005:1—6.
9. El-Ganaoui K. Homogénéisation de Modéles de Transfers Thermiques et Radiatifs Dans le Coeur Des Réacteur a Coloporteur Gaz. Ecole Polytechnique X, 2006.
10. Allaire G., El-Ganaoui K. Homogenization of a Conductive and Radiative Heat Transfer Problem. Multiscale Model. Simul. 2009;7:1148—1170.
11. Habibi Z. Homogénéisation et Convergence á Deux Échelles lors Déchanges Thermiques Stationnaires et Transitoires, Application aux Coeurs de Réacteurs Nucléaires á Caloporteur Gaz. Ecole Polytechnique, 2011.
12. Allaire G., Habibi Z. Second Order Corrector in the Homogenization of a Conductive-Radiative Heat Transfer Problem. Discrete Contin. Dynam. Systems. Ser. B. 2013;18(1):1—36.
13. Allaire G., Habibi Z. Homogenization of a Conductive, Convective, and Radiative Heat Transfer Problem in a Heterogeneous Domain. SIAM J. Math. Anal. 2013;45(3):1136—1178.
14. Amosov A.A. Poludiskretnye i Asimptoticheskie Priblizheniya k Resheniyu Zadachi Perenosa Tepla v Sisteme Ekranov pri Nalichii Izlucheniya. Sovremennye Problemy Matematicheskogo Modelirovaniya: Sb. Trudov XII Vseross. Shkoly-seminara. Rostov-na-Donu: Izd-vo RGU, 2007:21—36. (in Russian).
15. Amosov A.A., Gulin A.V. Poludiskretnye i Asimptoticheskie Approksimatsii Zadachi Perenosa Tepla v Sisteme Serykh Ekranov pri Nalichii Izlucheniya. Vestnik MEI. 2008;6:5—15. (in Russian).
16. Amosov A.A. Nonstationary Radiative-conductive Heat Transfer Problem in a Periodic System of Grey Heat Shields. J. Math. Sci. 2010;169(1):1—45.
17. Amosov A.A. Semidiscrete and Asymptotic Approximations for the Nonstationary Radiative-conductive Heat Transfer Problem in a Periodic System of Grey Heat Shields. J. Math. Sci. 2011;176(3):361—408.
18. Kremkova A.A. Poludiskretnye i Asimptoticheskie Approksimatsii Zadachi Radiatsionno-konduktivnogo Teploobmena v Dvumernoy Periodicheskoy Strukture. Vestnik MEI. 2012;6:151—161. (in Russian).
19. Amosov A.A., Kremkova A.A. Otsenka Pogreshnosti Poludiskretnogo Metoda Resheniya Zadachi Radiatsionno-konduktivnogo Teploobmena v Dvumernoy Periodicheskoy Strukture. Vestnik MEI. 2013;6:22—36. (in Russian).
20. Amosov A.A., Maslov D.A. Semidiscrete Approximations for the Stationary Radiativeconductive Heat Transfer Problem in the Two-dimensional System of Plates. Russ. J. Numer. Anal. Math. Model. 2016;31(1):1—17.
21. Amosov A.A. Asymptotic Approximations for the Stationary Radiative-conductive Heat Transfer Problem in a Two-dimensional System of Plates. Russ. J. Numer. Anal. Math. Model. 2017;32(3):173—185.
22. Amosov A.A., Krymov N.E. On a Nonstandard Boundary Value Problem Arising in Homogenization of Complex Heat Transfer Problems. J. Math. Sci. 2020;244(3):357—377.
23. Amosov A.A., Krymov N.E. Discrete and Asymptotical Approximations for One Stationary Radiative-conductive Heat Transfer Problem. Russ. J. Numer. Anal. Math. Model. 2020;35(3):127—141.
24. Amosov A.A., Krymov N.E. Error Estimate for Discrete Approximation of the Radiative-conductive Heat Transfer Problem in a System of Absolutely Black Rods. J. Math. Sci. 2020;251(6):773—786.
25. Amosov A.A., Krymov. N.E. On a Nonlinear Initial-boundary Value Problem with Venttsel Type Boundary Conditions Arizing in Homogenization of Complex Heat Transfer Problems. Mathematics. 2022;1890(10):1—23.
26. Amosov A.A., Krymov N.E. Justification of Discrete and Asymptotic Approximations for the Complex Heat Transfer Problem. J. Math. Sci. 2022;264(5):489—513
---
For citation: Amosov A.A., Krymov N.E. On the Solvability of a Nonstandard Nonlinear Boundary Value Problem Encountered in Homogenizing a Complex Heat Transfer Problem. Bulletin of MPEI. 2025;6:199—205. (in Russian). DOI: 10.24160/1993-6982-2025-6-199-205
---
The Results were Obtained as Part of the State Assignment of the Ministry of Science and Higher Education of the Russian Federation (Project No. FSWF-2023-0012)
---
Conflict of interests: the authors declare no conflict of interest

