Studying the Thermal Detonation Process Using the Microinteractions Model

Authors

  • Дмитрий [Dmitriy] Владимирович [V.] Гудеменко [Gudemenko]
  • Владимир [Vladimir] Игоревич [I.] Мелихов [Melikhov]
  • Олег [Oleg] Игоревич [I.] Мелихов [Melikhov]

DOI:

https://doi.org/10.24160/1993-6982-2017-2-32-39

Keywords:

steam explosion, thermal detonation, mathematical model, microinteraction model, multiphase processes

Abstract

The article presents the results from numerically simulating (using the VAPEX-D code) the development of thermal detonation waves in the “corium melt – steam-water mixture” system using the model of microinteractions for ex-vessel steam explosion conditions. A distinctive feature of this model is that all water contained in the considered system is conditionally divided into two parts (phases). One of these parts includes water that locates in close proximity to melt fragments and participates in rapid heat-transfer processes, and the second part includes water that locates relatively far away from these fragments. The article gives a detailed description of the thermal detonation model that was developed for the VAPEX-D code. Four interacting phases are considered in the model: (1) large (initial) melt droplets, (2) small melt fragments generated during fragmentation of large droplets, (3) water located relatively far away from these fragments (“far” water), and (4) water located in close proximity to melt fragments (“near” water), a so called m-phase. It is assumed that the m-phase is steam, which is in thermal and velocity equilibrium with the generated melt fragments. Calculations aimed at analyzing the way in which the thermal detonation wave achieves the stationary propagation mode were carried out. The values of pressure wave amplitude and propagation velocity as functions of the initial melt volume fraction were determined. The steady thermal detonation wave existence limits were investigated. It is shown that the thermal detonation wave existence region expands with decreasing the void fraction in the initial system; that is, detonation occurs at lower values of the melt volumetric fraction.

Author Biographies

Дмитрий [Dmitriy] Владимирович [V.] Гудеменко [Gudemenko]

Workplace Nuclear Power Plants Dept., NRU MPEI

Occupation Ph.D.-student

Владимир [Vladimir] Игоревич [I.] Мелихов [Melikhov]

Science degree: Dr.Sci. (Techn.)

Workplace: Nuclear Power Plants Dept., NRU MPEI

Occupation: professor

Олег [Oleg] Игоревич [I.] Мелихов [Melikhov]

Science degree: Dr. Sci. (Phys.-Math.)

Workplace «Electrogorsk Research Centre for the Safety of Nuclear Power Plants»; Nuclear Power Plants Dept., NRU MPEI

Occupation Deputy Director of Scientific Work; Professor

References

1. Fletcher D.A., Andersen R.P. A Review of Pressure Induced Propagation Models of the Vapour Explosion Process // Progress in Nuclear Energy. 1990. V. 23. No. 2. Pр. 137—179.

2. Board S.J, Hall R.W., Hall R.S. Detonation of Fuel Coolant Explosions // Nature. 1975. V. 254. Pр. 319—321.

3. Meignen R. et al. The Challenge of Modeling Fuel Coolant Interaction. Part II. Steam Explosion // Nuclear Engineering and Design. 2014. V. 280. Pp. 528—541.

4. Chu C.C., Corradini M.L. One-Dimensional Transient Fluid Model for Fuel-Coolant Interaction Analysis // Nuclear Science Engineering. 1989. Vol. 101. No. 1. Pр. 46—72.

5. Tang J., Corradini M.L. Modelling of the Complete Process of One-Dimensional Vapor Explosion // CSNI Specialist Mtg. On Fuel-Coolant Interactions. NUREG/CP-0127. 1994. Pр. 204—217.

6. Brayer C., Berthoud G. Vapor Explosion Modeling with MC3D // International Conference on Nuclear Engineering Proceedings, ICONE-5. 1997. Р. 2424.

7. Yuen W.W., Chen X., Theofanous T.G. On the Fundamental Microinteractions that Support the Propagation of Steam Explosions // Proceedings of the NURETH-5. Utah. Salt Lake City. September 21—24. 1992. V. II. Pр. 627—636.

8. Chen X., Yuen W.W., Theofanous T.G. On the Constitutive Description Microinteractions Concept in Steam Explosions // Proceedings of the NURETH-7. New York. Saratoga Springs. September 10—15. 1995. V. 3. Pр. 1586—1606.

9. Yuen W.W., Theofanous T.G. The Prediction of 2D Thermal Detonation and Resulting Damage Potential //Proceedings of OECD/CSNI Specialists Meeting on Fuel Coolant Interactions. USA. Santa Barbara. January 5—8. 1993. Pр. 233—250.

10. Theofanous T.G., Yuen W.W., Freeman K., Chen X. The Verification Basis of the ESPROSE.m Code // Proceedings of OECD/CSNI Specialists Meeting on FuelCoolant Interactions. Japan. Tokai-Mura. 1997. Pр. 287—299.

11. Мелихов О.И., Мелихов В.И., Соколин А.В. Взрывное взаимодействие расплава с водой. Моделирование кодом VAPEX-D // Теплофизика высоких температур. 2002. Т. 40. № 3. С.466—474.

12. Мелихов О.И., Соколин А.В., Кузнецов В.Д. Расчетный анализ взрывного взаимодействия кориума с водой // Теплоэнергетика. 2004. № 8. C. 73—76.

13. Melikhov O.I., Melikhov V.I., Nigmatulin B.I. VAPEX code analysis of steam explosions under severe accidents // Heat and Mass Transfer in Severe Nuclear Reactor Accidents. New York. Begell House. Inc. 1996. Pр. 540–551.

14. Нигматулин Р.И. Динамика многофазных сред. М.: Наука, 1987.

15. Соколин А.В. Моделирование парового взрыва при тяжелой аварии на АЭС с корпусным реактором с водой под давлением. Дисс. … канд. техн. наук. М.: Изд-во МЭИ, 2004.

16. TRAC-PF1/MOD2. Theory Manual. Los Alamos National Lab. Los Alamos. 1990. NM 87545.

17. Annunziato A., Addabbo C., Leva G. OECD/ CSNI International Standard Problem No. 39 on FARO Test L-14. Reference Specification // Technical Note. Joint Research Centre, Ispra. 1996. No. I.96.64.

18. Fletcher D.F. An Improved Mathematical Model of Melt/Water Detonations. Model Formulation and Example Results // Int. J. Heat Mass Transfer. 1991. V. 34. No. 10. Рр. 2435—2448.
#
1. Fletcher D.A., Andersen R.P. A Review of PressureInduced Propagation Models of the Vapour Explosion Process. Progress in Nuclear Energy. 1990;23;2:137—179.

2. Board S.J, Hall R.W., Hall R.S. Detonation of Fuel Coolant Explosions. Nature. 1975;254:319—321.

3. Meignen R. et al. The Challenge of Modeling FuelCoolant Interaction. Part II. Steam Explosion // Nuclear Engineering and Design. 2014;280:528—541.

4. Chu C.C., Corradini M.L. One-Dimensional Transient Fluid Model for Fuel-Coolant Interaction Analysis. Nuclear Science Engineering. 1989;101;1:46—72.

5. Tang J., Corradini M.L. Modelling of the Complete Process of One-Dimensional Vapor Explosion. CSNI Specialist Mtg. On Fuel-Coolant Interactions. NUREG/CP-0127. 1994:204—217.

6. Brayer C., Berthoud G. Vapor Explosion Modeling with MC3D. International Conference on Nuclear Engineering Proceedings, ICONE-5. 1997:2424.

7. Yuen W.W., Chen X., Theofanous T.G. On the Fundamental Microinteractions that Support the Propagation of Steam Explosions. Proceedings of the NURETH-5. Utah. Salt Lake City. September 21—24. 1992; II:627—636.

8. Chen X., Yuen W.W., Theofanous T.G. On the Constitutive Description Microinteractions Concept in Steam Explosions. Proceedings of the NURETH-7. New York. Saratoga Springs. September 10—15. 1995;3:1586—1606.

9. Yuen W.W., Theofanous T.G. The Prediction of 2D Thermal Detonation and Resulting Damage Potential. Proceedings of OECD/CSNI Specialists Meeting on FuelCoolant Interactions. USA. Santa Barbara. January 5—8. 1993:233—250.

10. Theofanous T.G., Yuen W.W., Freeman K., Chen X. The Verification Basis of the ESPROSE.m Code. Proceedings of OECD/CSNI Specialists Meeting on FuelCoolant Interactions. Japan. Tokai-Mura. 1997:287—299.

11. Melikhov O.I., Melikhov V.I., Sokolin A.V. Vzryvnoe Vzaimodeystvie Rasplava s Vodoy. Modelirovanie Kodom VAPEX-D. Teplofizika Vysokikh Temperatur. 2002;40;3:466—474. (in Russian).

12. Melikhov O.I., Sokolin A.V., Kuznetsov V.D. Raschetnyy Analiz Vzryvnogo Vzaimodeystviya Koriuma s Vodoy. Teploenergetika. 2004;8:73—76. (in Russian).

13. Melikhov O.I., Melikhov V.I., Nigmatulin B.I. VAPEX code analysis of steam explosions under severe accidents. Heat and Mass Transfer in Severe Nuclear Reactor Accidents. / J.T.Rogers, Editor. New York. Begell House. Inc. 1996:540–551.

14. Nigmatulin R.I. Dinamika Mnogofaznykh Sred. M.: Nauka, 1987. (in Russian).

15. Sokolin A.V. Modelirovanie Parovogo Vzryva pri Tyazheloy Avarii na AES s Korpusnym Reaktorom sVodoy pod Davleniem. Diss. … Kand. Tekhn. Nauk. Izd-Vo MPEI, 2004.

16. TRAC-PF1/MOD2. Theory Manual. Los Alamos National Lab. Los Alamos. 1990. NM 87545.

17. Annunziato A., Addabbo C., Leva G. OECD/ CSNI International Standard Problem No. 39 on FARO Test L-14. Reference Specification. Technical Note. Joint Research Centre, Ispra. 1996;I.96.64.

18. Fletcher D.F. An Improved Mathematical Model of Melt/Water Detonations. Model Formulation and Example Results. Int. J. Heat Mass Transfer. 1991;34;10:2435—2448.

Published

2019-01-01

Issue

Section

Power engineering (05.14.00)