Optimizing the Acoustic-Emission Technique for Examining the Strength of Welded Joints
DOI:
https://doi.org/10.24160/1993-6982-2017-2-96-101Keywords:
acoustic emission, information, optimization, micromechanical model, diagnostic parameters, strength, lifetime, welded jointsAbstract
Lack of rigor in the justification of approaches to interpretation of acoustic emission (AE) signal recording results generates the need to improve the methodological aspects of acoustic emission (AE) examination methods and to ensure the validity of diagnosing the strength state of technical items, which would make it possible to correlate the AE parameters with the material damageability parameters and reliability indicators. The stated problem is solved by sequentially constructing adequate, logically interconnected and hierarchically subordinated models of the examined item in decreasing order of their informational content with increasing the level of abstraction and determining the model parameters. Based on this approach, the article formulates the main principles of optimizing the AE-based diagnostic technologies in regard of rules for conducting AE tests, recording and processing primary AE information, and constructing models describing the lifetime governing destruction process, AE phenomenon models reflecting the destruction process, and the time dependencies of its parameters. The functional model is focused at predicting the examined item’s lifetime and selecting the crack formation process and time dependences of the AE parameters related to the lifetime as a subject of study. The physical model that follows from the functional model interconnects the selected functional properties and factors via generalized physical properties and laws. The subsequent construction of the mathematical model boils down to a quantitative description of the selected physical laws in the form of very specific mathematical expressions uniting the metrological and strength factors. The article describes the micromechanical model describing the destruction process and time dependencies of the parameters relating to the acoustic emission accompanying the destruction process. This model, which is constructed in accordance with the above-mentioned principles, makes it possible to propose an approach to determining the informative diagnostic parameters robust to the influence of destabilizing factors and bearing information about the strength of the examined item. The article presents some concentration-kinetic AE indicators characterizing the strength state of technical items, which contain formulas for estimating the strength and lifetime parameters.
References
2. Ivanov V. I. The Prime Problems of Acoustic Emission Diagnostics of Technical Devices and Constructions // 10th European Conference of Non-Destructive Testing. Moscow. June 7 – 11. 2010. URL: http://www.ndt.net/article/ecndt2010/reports/1_07_03.pdf
3. ПБ 03-593-03. Правила организации и проведения акустико-эмиссионного контроля сосудов, аппаратов, котлов и технологических трубопроводов.
4. Носов В.В. Методология акустико-эмиссионной оценки прочности как основ эффективности неразрушающего контроля // В мире неразрушающего контроля. 2014. № 3 (65). С. 713.
5. Носов В.В. Диагностика машин и оборудования. СПб: СПбГТУ, 2011.
6. Носов В.В. Механика композиционных материалов. СПб: СПбГТУ, 2011.
7. Носов В.В. Автоматизированная оценка ресурса образцов конструкционных материалов на основе микромеханической модели временных зависимостей параметров акустической эмиссии // Дефектоскопия. 2014. № 12. С. 24—35.
8. Носов В.В., Номинас С.В., Зеленский Н.А. Оценка прочности сосудов давления на основе использования явления акустической эмиссии // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. 2015. № 2 (219). С. 182—190.
9. Носов В.В. Принципы оптимизации технологий акустико-эмиссионного контроля прочности промышленных объектов // Дефектоскопия. 2016. № 7. С. 52—67.
#
1. Bigus G.A., Daniev YU.F., Bystrova N.A., Galkin D.I. Diagnostika Tekhnicheskikh Ustroystv. M.: Izdvo MGTU im. N.E. Baumana, 2014. (in Russian).
2. Ivanov V. I. The Prime Problems of Acoustic Emission Diagnostics of Technical Devices and Constructions // 10th European Conference of Non-Destructive Testing. Moscow. June 7 – 11. 2010. URL:http://www.ndt.net/article/ecndt2010/reports/1_07_03.pdf
3. PB 03-593-03. Pravila Organizatsii i Provedeniya Akustiko-Emissionnogo Kontrolya Sosudov, Apparatov, Kotlov i Tekhnologicheskikh Truboprovodov. (in Russian).
4. Nosov V.V. Metodologiya Akustiko-Emission-Noy Otsenki Prochnosti kak Osnov Effektivnosti Nerazrushayu-Shchego Kontrolya // V Mire Nerazrushayushchego Kont-Rolya. 2014;3(65);713. (in Russian).
5. Nosov V.V. Diagnostika Mashin i Oborudovaniya. SPb: SPbGTU, 2011. (in Russian).
6. Nosov V.V. Mekhanika Kompozitsionnykh Materialov. SPb: SPbGTU, 2011. (in Russian).
7. Nosov V.V. Avtomatizirovannaya Otsenka Resursa Obraztsov Konstruktsionnykh Materialov na Osnove Mikromekhanicheskoy Modeli Vremennykh Zavisimostey Parametrov Akusticheskoy Emissii // Defektoskopiya.2014;12;24—35. (in Russian).
8. Nosov V.V., Nominas S.V., Zelenskiy N.A. Otsenka Prochnosti Sosudov Davleniya na Osnove Ispol'zovaniya Yavleniya Akusticheskoy Emissii // Nauchno-Tekhnicheskie Vedomosti Sankt-Peterburgskogo Gosudarstvennogo Politekhnicheskogo Universiteta. 2015;2 (219):182—190. (in Russian).
9. Nosov V.V. Printsipy Optimizatsii Tekhnologiy Akustiko-Emissionnogo Kontrolya Prochnosti Promyshlennykh Ob′ektov // Defektoskopiya. 2016;7:52—67. (in Russian).

