Numerical Modeling of the Hydrodynamic Loads Applied on the «BREST-300» Reactor Steam Generator Tubes during a Primary-to-Secondary Leak Accident

Authors

  • Арсен [Arsen] Шамилевич [Sh.] Исхаков [Iskhakov]
  • Владимир [Vladimir] Игоревич [I.] Мелихов [Melikhov]
  • Олег [Oleg] Игоревич [I.] Мелихов [Melikhov]

DOI:

https://doi.org/10.24160/1993-6982-2017-3-33-40

Keywords:

nuclear power plant safety, steam generator primary-to-secondary leak, lead coolant, equilibrium model, hydrodynamic impact

Abstract

The article considers the flashing of water in liquid lead and the hydrodynamic processes caused by this phenomenon initially in the emergency mode involving primary-to-secondary leak in the steam generator used as part of the «BREST-OD-300» fast-neutron lead-cooled nuclear reactor plant. The analysis was carried out using an integral equilibrium thermodynamic model for water describing the flashing of a single droplet. In the analysis, uniform distributions of the physical parameters (pressure, void fraction, etc.) inside the droplet are assumed. The liquid lead hydrodynamics is described by a system of nonsteady equations of continuity and motion for ideal incompressible fluid in a spherical system of coordinates. Mathematical descriptions of the “equilibrium” model and semi-implicit numerical method for solving the differential equations used in the model are given. Time dependences of the droplet expansion radius and droplet pressure are obtained. Spatial distributions of lead velocity and pressure for different moments of time are calculated and presented. Transitions of one kind of energy to another are analyzed. The numerical results obtained from the equilibrium model are compared with similar results calculated from an “explosion” model, the main assumption of which is that the initial excess energy of the droplet instantaneously transforms into the liquid lead mechanical energy. The article presents a short description of the explosion model developed proceeding from generalization of the model of instantaneous point energy release (explosion) in ideal incompressible liquid for the case of instantaneous energy release in a finite volume. The liquid lead velocity field is calculated, based on which the hydrodynamic force applied to the steam generator tube located in close vicinity of the rupture place is estimated. The calculation results have shown that this force is insufficient for causing damage to the nearest steam generator tubes. It has been shown that the hydrodynamic impact force calculated taking into account a finite rate of energy transfer from the droplet to the lead (the equilibrium model) is lower than that obtained from using the explosion model.

Author Biographies

Арсен [Arsen] Шамилевич [Sh.] Исхаков [Iskhakov]

Workplace Nuclear Power Plants Dept., NRU MPEI

Occupation Ph.D.-student

Владимир [Vladimir] Игоревич [I.] Мелихов [Melikhov]

Science degree: Dr.Sci. (Techn.)

Workplace Nuclear Power Plants Dept., NRU MPEI

Occupation professor

Олег [Oleg] Игоревич [I.] Мелихов [Melikhov]

Science degree: Dr. Sci. (Phys.-Math.)

Workplace «Electrogorsk Research Centre for the Safety of Nuclear Power Plants»; Nuclear Power Plants Dept., NRU MPEI

Occupation Deputy Director of Scientific Work; Professor

References

1.Драгунов Ю.Г., Лемехов В.В., Смирнов В.С., Чернецов Н.Г. Технические решения и этапы разработки реакторной установки БРЕСТ-ОД-300 // Атомная энергия. 2012. No 1. С. 58—64.

2. Dinh T.N. Multiphase Flow Phenomena of Steam Generator Tube Rupture in a Lead-cooled Reactor System: a Scoping Analysis // Proc. ICAPP 2007. Paper 7497. Nice (France), 2007.

3. Нигматулин Р.И. Динамика многофазных сред. М.: Наука, 1987.

4. Sobolev V. Database Of Thermophysical Properties of Liquid Metal Coolants For Gen-Iv. Sodium, Lead, Lead-Bismuth Eutectic (and Bismuth). Scientific Rep. the Belgian Nuclear Research Centre, 2011.

5. Коробейников В.П. Задачи теории точечного взрыва. М.: Наука, 1985.

6. Исхаков А.Ш. Анализ вскипания капли воды в жидком свинце на основе взрывной модели // Инновации в атомной энергетике: сб. докладов конф. молодых специалистов. М.: Изд-во АО «НИКИЭТ», 2015.

7. Безносов А.В., Бокова Т.А. Оборудование энергетических контуров с тяжелыми жидкометаллическими теплоносителями в атомной энергетике. Нижний Новгород: Нижегород. гос. техн. ун-т им. Р.Е. Алексеева, 2012.

8. Rodriguez I., Lehmkuhl O., Chiva J., Borrell R., Oliva A. On the Flow Past a Circular Cylinder from Critical to Super-Critical Reynolds Numbers: Wake Topology and Vortex Shedding // Int. J. Heat and Fluid Flow. 2015. V. 55. Pp. 91—103.
---
Для цитирования: Исхаков А.Ш., Мелихов В.И., Мелихов О.И. Численное моделирование гидродинамического воздействия на трубки парогенератора реактора «БРЕСТ-300» при аварии «межконтурная неплотность» // Вестник МЭИ. 2017. № 3. С. 33—40. DOI: 10.24160/1993-6982-2017-3-33-40.
#
1.Dragunov Yu.G., Lemekhov V.V., Smirnov V.S., Chernetsov N.G.Tekhnicheskie Resheniya i Etapy Razrabotki Reaktornoy Ustanovki BREST-OD-300. Atomnaya Energiya. 2012;1:58—64. (in Russian).

2. Dinh T.N.Multiphase Flow Phenomena of Steam Generator Tube Rupture in a Lead-cooled Reactor System: a Scoping Analysis. Proc. ICAPP 2007. Paper 7497. Nice (France), 2007.

3. Nigmatulin R.I. Dinamika Mnogofaznykh Sred. M.: Nauka, 1987. (in Russian).

4. Sobolev V. Database of Thermophysical Properties of Liquid Metal Coolants For Gen-Iv. Sodium, Lead, Lead-Bismuth Eutectic (and Bismuth). Scientific Rep. the Belgian Nuclear Research Centre, 2011.

5. Korobeynikov V.P. Zadachi Teorii Tochechnogo Vzryva. M.: Nauka, 1985. (in Russian).

6. Iskhakov A.Sh. Analiz Vskipaniya Kapli Vody v Zhidkom Svintse na Osnove Vzryvnoy Modeli. Innovatsii v Atomnoy Energetike: sb. dokladov konf. Molodykh Spetsialistov. M.: Izd-vo AO «NIKIET», 2015. (in Russian).

7.Beznosov A.V., Bokova T.A. Oborudovanie Energeticheskikh Konturov s Tyazhelymi Zhidkometallicheskimi Teplonositelyami v Atomnoy Energetike. Nizhniy Novgorod: Nizhegorod. Gos. Tekhn. Un-t im. R.E. Alekseeva, 2012. (in Russian).

8.Rodriguez I., Lehmkuhl O., Chiva J., Borrell R., Oliva A. On the Flow Past a Circular Cylinder from Critical to Super-Critical Reynolds Numbers: Wake Topology and Vortex Shedding. Int. J. Heat and Fluid Flow. 2015;55: 91—103.
---
For citation: Iskhakov A.Sh., Melikhov V.I., Melikhov O.I. Numerical Modeling of the Hydrodynamic Loads Applied on the «BREST-300» Reactor Steam Generator Tubes during a Primary-to-Secondary Leak Accident. MPEI Vestnik. 2017; 3:33—40. (in Russian). DOI: 10.24160/1993-6982-2017-3-33-40.

Published

2019-01-15

Issue

Section

Power engineering (05.14.00)