ON THE NATURE OF CONVERGENCE OF THE ITERATIVE-ASYMPTOTIC METHOD OF SOLVING THE INVERSE PROBLEM FOR THE HELMHOLTZ EQUATION

Authors

  • Александр [Alexander] Сергеевич [S.] Барашков [Barashkov]
  • Антон [Anton] Алексеевич [A.] Небера [Nebera]

Keywords:

Helmholtz equation, inverse problem, asymptotic and uniform convergences, uniqueness of the solution

Abstract

There is a method for solving inverse problems for partial differential equations, applicable in the case of slowly varying coefficients. According to it, you can construct a sequence, that converges asymptotically to the desired solution of the inverse problem. In this paper, we find cases where this sequence converges uniformly. In addition we have proved the uniqueness of the solution of the inverse problem.

Author Biographies

Александр [Alexander] Сергеевич [S.] Барашков [Barashkov]

Science degree: Dr.Sci. (Phys.-Math.)
Workplace dept. of Higher Mathematics NRU MPEI
Occupation professor

Антон [Anton] Алексеевич [A.] Небера [Nebera]

Workplace Higher Mathematics Dept., NRU MPEI
Occupation ph.D.-student

References

1. Барашков А.С., Дмитриев В.И. Об обратной задаче глубинного магнитотеллурического зондирования // Докл. АН СССР. 1987. Т. 295. № 1. С. 83 — 86
2. Барашков А.С. Асимптотические представления решения обратной задачи для уравнения Гельмгольца// Вычислительная математика и математическая физика. 1988. Т. 28. № 12. С. 1823 — 1831.
3. Barashkov A.S. Small parameter Method in Multidi-mensional Inverse Problems. Utrecht: VSP, 1998.
4. Бердичевский М.Н., Дмитриев В.Н. Модели и методы магнитотеллургии. М.: Научный мир, 2009.
5. Бахвалов Н.С. Численные методы. М.: Наука, 1973.

Published

2018-12-03

Issue

Section

Mathematics