Estimates of the Deviation Probabilities for the Sums of Independent Bernoulli Random Variables

Authors

  • Алексей [Aleksey] Николаевич [N.] Архангельский [Arkhangelskiy]
  • Ирина [Irina] Николаевна [N.] Дорофеева [Dorofeeva]
  • Сергей [Sergey] Федорович [F.] Кудин [Kudin]
  • Генрих [Genrikh] Михайлович [M.] Пиголкин [Pigolkin]

DOI:

https://doi.org/10.24160/1993-6982-2017-6-166-171

Keywords:

Bernoulli random variables, independent random variables, conjugate random variables, Lebegue-Stieltjes integral

Abstract

A need to analyze the sum of independent Bernoulli random variables is encountered in many problems considered in the probability theory and mathematical statistics. As is known, if the initial quantities have the same distribution, their sum will be a binomial quantity. The case of the sum of non-identically distributed Bernoulli random variables is considered. Bilateral estimates of the deviation probability for the arithmetic mean of independent Bernoulli random variables from the arithmetic mean of success probabilities have been derived using the conjugate distributions method.

Author Biographies

Алексей [Aleksey] Николаевич [N.] Архангельский [Arkhangelskiy]

Science degree:

Ph.D. (Phys.-Math.)

Workplace

Higher Mathematics Dept., NRU MPEI

Occupation

Assistant Professor

Ирина [Irina] Николаевна [N.] Дорофеева [Dorofeeva]

Workplace

Higher Mathematics Dept., NRU MPEI

Occupation

Senior Lecturer

Сергей [Sergey] Федорович [F.] Кудин [Kudin]

Science degree:

Ph.D. (Techn.)

Workplace

Higher Mathematics Dept., NRU MPEI

Occupation

Assistant Professor

Генрих [Genrikh] Михайлович [M.] Пиголкин [Pigolkin]

Science degree:

Ph.D. (Phys.-Math.)

Workplace

Higher Mathematics Dept., NRU MPEI

Occupation

Assistant Professor

References

1. Архангельский А.Н., Кириченко П.В., Пиголкин Г.М. Оценки вероятностей уклонений сумм для случайных величин Бернулли // Вестник МЭИ. 2016. № 1. С. 50—52.

2. Шевцова И.Г. О точности нормальной аппроксимации для сумм независимых случайных величин // ДАН. 2012. Т. 443. № 5. C. 555—560.

3. Люк Ю. Специальные математические функции и их аппроксимации. М.: Мир, 1980
---
Для цитирования: Архангельский М.Н., Дорофеева И.Н., Кудин С.Ф., Пиголкин Г.М. Оценки вероятностей уклонений сумм независимых случайных величин Бернулли // Вестник МЭИ. 2017. № 6. С. 166—171. DOI: 10.24160/1993-6982-2017-6-166-171.
#
1. Arhangel'skiy A.N., Kirichenko P.V., Pigolkin G.M. Otsenki Veroyatnostey Ukloneniy Summ dlya Sluchaynyh Velichin Bernulli. Vestnik MPEI. 2016;1: 50—52. (in Russian).

2. Shevtsova I.G. O Tochnosti Normal'noy Approksimatsii dlya Summ Nezavisimyh Sluchaynyh Velichin // DAN. 2012;443;5:555—560. (in Russian).

3. Lyuk YU. Spetsial'nye Matematicheskie Funktsii i Ih Approksimatsii. M.: Mir, 1980. (in Russian).
---
For citation: Arkhangelsky A.N., Dorofeeva I.N., Kudin S F., Pigolkin G.M. Estimates of the Deviation Probabilities for the Sums
of Independent Bernoulli Random Variables. MPEI Vestnik. 2017;6: 166—171. (in Russian). DOI: 10.24160/1993-6982-2017-6-166-171.

Published

2019-01-21

Issue

Section

Mathematics