Numerical Study of the Temperature Field in the BREST-OD-300 Reactor Plant’s Core with the Partially Blocked Flow Cross Section at the Coolant Inlet
DOI:
https://doi.org/10.24160/1993-6982-2018-1-67-71Keywords:
reactor core, shroudless fuel assembly, partial blocking, flow cross section, numerical calculations, safety, BREST-OD-300 reactorAbstract
A reactor core design with shroudless fuel assemblies (FAs) has been adopted in the BREST-OD-300 reactor’s basic design. The choice of shroudless FAs is dictated by the fact that with this reactor core design, there are no separate isolated fuel rod cooling channels shaped by FA shrouds. Therefore, emergencies involving partial blocking of the core flow cross section at the core inlet that are considered for the newly designed lead-cooled reactor, will have less severe consequences for the fuel rods than they may be in the case of using shrouded FAs. Thus, with the shrouded FA’s flow cross section being fully blocked, the heat produced by the fuel rods can only be removed from them to the coolant flowing in the gap between the shrouds (both due to natural convection of coolant inside the FA and due to thermal conductivity throughout the fuel rod bundle in the affected FA, predominantly in the radial direction). Obviously, if the core power is not reduced to a significant extent, overheating of fuel rods and loss of their cladding tightness will be unavoidable. A hypothetical situation involving partial blocking of the BREST-OD-300 reactor plant’s core flow cross section was investigated by carrying out 3D calculations using a porous body model. The case of the FA flow cross section being fully blocked at the level corresponding to the first spacer grid from the bottom is considered. A conclusion can be drawn from the obtained study results that the growth of fuel rod cladding temperature that will take place when the flow cross section of even seven central FAs is blocked will not cause them to fail immediately (the cladding temperature will in this case make 790 °C), but in all likelihood, it will only result in their service life to become shorter. To obtain better accuracy of the reactor core analysis performed according to the porous body model, a more detailed reactor core model representing individual FAs and gaps between them should be used. Nonetheless, the results obtained from the performed numerical analysis show that the reactor core with shroudless fuel assemblies has a significant advantage over the design with shrouded fuel assemblies.
References
2. Dragunov Yu.G., Lemekhov V.V., Moiseyev A.V., Smirnov V.S. Lead-Cooled Fast-Neutron Reactor (BREST) // INPRO Dialog-Forum. Vienna (Austria), 2015. P. 32.
3. Драгунов Ю.Г. и др. Технические решения и этапы разработки реакторной установки БРЕСТ-ОД-300 // Атомная энергия. 2012. Т. 113. Вып. 1. C. 58—64.
4. Драгунов Ю.Г. и др. Реактор на быстрых нейтронах со свинцовым теплоносителем (БРЕСТ) // Ин- новационные проекты и технологии ядерной энергетики: Материалы III Междунар. науч.-техн. конф. М.: ОАО «НИКИЭТ», 2014. С. 94—102.
5. Власичев Г.Н. Анализ проектной аварии с блокировкой отдельной ТВС реактора на быстрых нейтронах с натриевым теплоносителем // Современные проблемы науки и образования. 2014. № 6. [Элктрон. ресурс] https://science-education.ru/ru/article/view?id=16588 (дата обращения 25.12.2017)
6. Волков А.В. Обоснование безопасности быстрого реактора с натриевым теплоносителем при аварийных процессах, связанных с повреждением или разрушением активной зоны: автореф. дисс....канд. физ.-мат. наук. Обнинск, 2009.
7. Щеляев А. FlowVision — современный российский инструмент математического моделирования // САПР и графика. 2010. № 12. С. 43—48.
8. Жукова А.В., Сорокина А.П. Методические указания и рекомендации по теплогидравлическому расчету активных зон быстрых реакторов. РТМ 1604.008-88. М.: ФЭИ, 1988.
9. Уонг Х. Основные формулы и данные по теплообмену для инженеров. М.: Атомиздат, 1979.
10. Афонин С.Ю., Афремов Д.А., Захаров А.Г., Смирнов В.П. Комбинированная методика расчета тепловыделяющих сборок реакторов с жидкометаллическим теплоносителем и ее обоснование // Инновационные проекты и технологии ядерной энергетики: Сборник докладов IV Междунар. науч.-техн. конф. М., 2016. C. 168—170.
---
Для цитирования: Чухлов А.Г., Жеребцова Е.О. Численное исследование температурного поля в активной зоне РУ БРЕСТ-ОД-300 при частичной блокировке проходного сечения на входе теплоносителя // Вестник МЭИ. 2018. № 1. С. 67—71. DOI: 10.24160/1993-6982-2018-1-67-71.
#
1. Dragunov Yu.G. i dr. Tekhnicheskiy Proekt RU BREST-OD-300: Etapy Razrabotki i Obosnovaniya. Inno- vatsionnye Proekty I Tekhnologii Yadernoy Energetiki: Sbornik Dokladov IV Mezhdunar. Nauch.-tekhn. Konf. M., 2016:21—30. (in Russian).
2. Dragunov Yu.G., Lemekhov V.V., Moiseyev A.V., Smirnov V.S. Lead-Cooled Fast-Neutron Reactor (BREST). INPRO Dialog-Forum. Vienna (Austria), 2015:32.
3. Dragunov Yu.G. i dr. Tekhnicheskie Resheniya i Etapy Razrabotki Reaktornoy Ustanovki BREST-OD-300. Atomnaya energiya. 2012;113;1:58—64. (in Russian).
4. Dragunov Yu.G. i dr. Reaktor na Bystryh Neytronah so Svintsovym Teplonositelem (BREST). Innovatsionnye Proekty i Tekhnologii Yadernoy Energetiki: Materialy III Mezhdunar. Nauch.-tekhn. Konf. M.: OAO «NIKIET», 2014:94—102. (in Russian).
5. Vlasichev G.N. Analiz Proektnoy Avarii s Blokirovkoy Otdel'noy TVS Reaktora na Bystryh Neytronah s Natrievym Teplonositelem. Sovremennye Problemy Nauki i Obrazovaniya. 2014. № 6. [Elktron. Resurs] https://science-education.ru/ru/article/view?id=16588 (Data Obrashcheniya 25.12.2017) (in Russian).
6. Volkov A.V. Obosnovanie Bezopasnosti Bystrogo Reaktora s Natrievym Teplonositelem pri Avariynyh Protsessah, Svyazannyh s Povrezhdeniem ili Razrusheniem Aktivnoy Zony: Avtoref. Diss....Kand. Fiz.-mat. Nauk. Obninsk, 2009. (in Russian).
7. Shchelyaev A. FlowVision — Sovremennyy Rossiyskiy Instrument Matematicheskogo Modelirovaniya. SAPR i Grafika. 2010;12:43—48. (in Russian).
8. Zhukova A.V., Sorokina A.P. Metodicheskie Ukazaniya i Rekomendatsii po Teplogidravlicheskomu Raschetu Aktivnyh Zon Bystryh Reaktorov. RTM 1604.008-88. M.: FEI, 1988. (in Russian).
9. Uong H. Osnovnye Formuly i Dannye po Teploobmenu dlya Inzhenerov. M.: Atomizdat, 1979. (in Russian).
10. Afonin S.Yu., Afremov D.A., Zaharov A.G., Smirnov V.P. Kombinirovannaya Metodika RaschetaTeplovydelyayushchih Sborok Reaktorov s Zhidkometalli- Cheskim Teplonositelem i ee Obosnovanie. Innovatsionnye Proekty i Tekhnologii Yadernoy Energetiki: Sbornik Dokladov IV Mezhdunar. Nauch.-tekhn. Konf. M., 2016:168—170. (in Russian).
---
For citation: Chukhlov A.G., Zherebtsova Ye.O. Numerical Study of the Temperature Field in the BREST-OD-300 Reactor Plant’s Core with the Partially Blocked Flow Cross Section at the Coolant Inlet. MPEI Vestnik. 2018;1:67—71. (in Russian). DOI: 10.24160/1993-6982-2018-1-67-71.

