A Method for Shaping Simulation Data from a Controlled Plant Cognitive Model
DOI:
https://doi.org/10.24160/1993-6982-2018-1-106-111Keywords:
linear regression, simulation data, dual scaling, correlation, cognitive modelAbstract
Matters concerned with shaping and using simulation data obtained from a controlled plant cognitive model specified by experts are considered. Apart from the cognitive model itself experts have to know the scales in which the values are presented and the variation ranges of the factors used as concepts in the model. The cognitive model is specified by experts on the basis of their knowledge about the processes in the controlled plant and is represented as an oriented graph or a cognitive table. Relations between the factors are detailed down to the relation’s direction, sign and strength. Simulation data are shaped proceeding from the assumption that there are latent quantitative factors that give rise to qualitative factors. The article presents formulas that allow one to determine, based on the available input data, the parameters of linear regression dependences between the factors based on which the simulation data are generated. The obtained simulation data can be used to control the cognitive model quality, as well as in using the cognitive model and in training students and experts to construct and apply the cognitive model with the use of observation data.
References
2. Трахтенгерц Э.А. Компьютерная поддержка принятия решений. М.: СИНТЕГ, 1998.
3. Nishisato Shizuhiko. Elements of Dual Scaling: an Introduction to Practical Data Analysis — Lawrence Erlbaum Associates. Hillsdale (N.J.), 1994.
4. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1983.
5. Полотнов М.М., Фомин Г.А. Методы построения и использования когнитивных моделей объектов принятия решений. М.: Изд-во МЭИ, 2015.
6. Фомин Г.А., Полотнов М.М. Средства обучения построению и применению моделей сложных объектов управления // Информатизация инженерного образования: Труды Междунар. науч.-практ. конф. М.: Изд. дом МЭИ, 2016. C. 234 — 237.
7. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: исследование зависимостей. М.: Финансы и статистика, 1985.
---
Для цитирования: Фомин Г.А., Фомина Е.С. Метод формирования имитационных данных по когнитивной модели объекта управления // Вестник МЭИ. 2018. № 1. С. 106—111. DOI: 10.24160/1993-6982-2018-1-106-111.
#
1. Anadiotis Dzh. Put' ot Dannykh k Analitike i II: ot Naglyadnogo Otobrazheniya k Prognozam. PC Week 2016;21 (920) [Elektron. Resurs] https://www.pcweek.ru/ai/article/detail.php?ID=190406 ¶m=mail (Data Obrashcheniya 25.04.2017) (in Russian).
2. Trakhtengerts E.A. Komp'yuternaya Podderzhka Prinyatiya Resheniy. M.: SINTEG, 1998. (in Russian).
3. Nishisato Shizuhiko. Elements of Dual Scaling: an Introduction to Practical Data Analysis — Lawrence Erlbaum Associates. Hillsdale (N.J.), 1994.
4. Bol'shev L.N., Smirnov N.V. Tablitsy Matematiches- koy Statistiki. M.: Nauka, 1983. (in Russian).
5. Polotnov M.M., Fomin G.A. Metody Postroeniya i Ispol'zovaniya Kognitivnykh Modeley Ob´ektov Prinyatiya Resheniy. M.: Izd-vo MPEI, 2015. (in Russian).
6. Fomin G.A., Polotnov M.M. Sredstva Obucheniya Postroeniyu i Primeneniyu Modeley Slozhnykh Ob´ektov Upravleniya. Informatizatsiya Inzhenernogo Obrazovaniya: Trudy Mezhdunar. Nauch.-prakt. Konf. M.: Izd. dom MPEI, 2016:234 — 237. (in Russian).
7. Ayvazyan S.A., Enyukov I.S., Meshalkin L.D. Prikladnaya Statistika: Issledovanie Zavisimostey. M.: Finansy i Statistika, 1985. (in Russian).
---
For citation: Fomin G.A., Fomina Ye.S. A Method for Shaping Simulation Data from a Controlled Plant Cognitive Model. MPEI Vestnik. 2018;1:106—111. (in Russian). DOI: 10.24160/1993-6982-2018-1-106-111.

