A Comparative Analysis of the Results from Experimental Investigation of Imbalanced Operation Modes of a Three-phase Transformer and Full-phase Simulation Data
DOI:
https://doi.org/10.24160/1993-6982-2018-3-51-59Keywords:
equivalent circuit, modeling, transformerAbstract
Achieving better energy efficiency and quality of electrical power supply in distribution networks is a multipronged problem, which should be solved with reference to unbiased criteria. Data obtained from load flow analysis of the network under study serve as the main criterion in estimating the efficiency of technical solutions and administrative measures aimed at decreasing technical and commercial losses and improving the key electric energy quality indicators. At the same time, achieving better accuracy of a numerical analysis of electrical networks with loads unevenly distributed among the phases, including, in particular, distribution networks, still remains a significant problem in the electric power industry. The single-line equivalent circuits, which are conventionally used in engineering applications, do not allow the steady-state operating conditions of a three-phase electric network containing multiple sources of imbalance to be analyzed with sufficient accuracy. Under such conditions, it is reasonable to make a shift for using a three-phase representation of the network under study. This approach involves the need to construct three-phase equivalent circuits of electrical equipment, determine their parameters and use them for analysis. The article describes a conceptual approach for constructing the three-phase model of a three-phase two-winding transformer with a wye - grounded wye winding connection circuit, which is widely used in distribution networks. The following experiments were carried out on the test bench: open-circuit test, short-circuit test, load operation tests, open-circuit test under zero sequence supply voltage, and open-circuit test and load operation tests with one phase disconnected. Part of the experimental data was used to calculate the parameters of the three-phase equivalent circuit and to model a three-phase transformer in the MATLAB environment based on the described method.A comparison between the simulated and the experimental data testifies that the performed simulation of various transformer operating conditions yields highly reliable and accurate results. In the balanced mode, the maximum and minimum errors of simulating the main parameters were found to be 4.78 and 2.13%, respectively. In the unbalanced mode, the maximum and minimum errors of simulating the main parameters were found to be 6.6 and 0.78%, respectively. The obtained results allow a conclusion to be drawn that the proposed model of a three-phase two-winding transformer with the wye - grounded wye winding connection circuit adequately reflects the properties of a real transformer. The proposed technique allows the key properties of a three-phase transformer to be revealed, namely, the redistribution of magnetic fluxes among the magnetic core legs and the presence of voltage across the secondary winding when one of the primary winding phases is open. It can also be inferred that a three-phase transformer has a balancing effect.
References
2. Бучкина Е.А. и др. Динамика изменений показателей качества электроэнергии распределительных сетей ОАО «МОЭСК» // Управление качеством электрической энергии: Сб. трудов Междунар.̆ науч.- практ.̆ конф. М.: Радуга, 2014.
3. Железко Ю.С. Потери электроэнергии. Реактивная мощность. Качество электроэнергии. М.: ЭНАС, 2009.
4. Теоретические основы электротехники. Т. 1. Основы теории цепей / под ред. П.А. Ионкина. М.: Высшая школа, 1965.
5. Ульянов C.А. Электромагнитные переходные процессы в электрических системах. М.: Энергия, 1970.
6. Сбитнев С.А., Шмелев В.Е., Абрамченко Е.В. Моделирование трехфазной электрической сети малого населенного пункта // Вестник МЭИ. 2015. № 6. С. 44 — 47.
7. Абрамченко Е.В., Сбитнев С.А., Шмелев В.Е. Расчет тестовой распределительной сети на основе трехфазных схем замещения // Сб. науч.-техн. статей сотрудников группы компаний «Россети». М.: Электроэнергия. Передача и распределение, 2017.
8. Гусейнов А.М, Ибрагимов Ф.Ш. Расчет в фазных координатах несимметричных установившихся и переходных режимов в сложных электроэнергетических системах // Электричество. 2012. № 5. С. 10 — 17.
9. Солдатов В.А., Баранов А.А. Аналитическая модель трансформаторов «звезда – треугольник» и «звезда – звезда с нулем» в фазных координатах // Достижения науки и техники АПК. 2011. № 1. С. 76 — 79.
10. Закарюкин В.П., Крюков А.В., Шульгин М.С. Параметрическая идентификация силовых трансформаторов // Вестник ИрГТУ. 2011. № 12. С. 219 — 227.
11. Peng Xiao, David C. Yu, Wei Yan. A Unified Three-Phase Transformer Model for Distribution Load Flow Calculations // IEEE Trans. Power Syst. 2006. V. 21. No.1. Pp. 153 — 159.
12. Izudin Džafić, Rabih A. Jabr, Hans-Theo Neisius. Transformer Modeling for Three-phase Distribution Network Analysis // IEEE Trans. Power Syst. 2015. V. 30. No. 5. Pp. 2604 — 2611.
13. Qiong Wu, Saeed Jazebi, Francisco de Leon. Parameter Estimation of Three-phase Transformer Models for Low-frequency Transient Studies from Terminal Measurements // IEEE Trans. Magnetics. 2017. V. 53. No. 7. Pp. 1 — 8.
14. Брускин Д.Э., Зорохович А.Е., Хвостов В.С. Электрические машины. Ч. 1. М.: Высшая школа, 1979.
15. Селезнев В.Ю., Сбитнев С.А., Шмелев В.Е., Горюшин Ю.А. Новый матричный метод моделирования режимов магистральных и распределительных электрических сетей по трехфазным схемам замещения // Интеллектуальная электроэнергетика, автоматика, высоковольтное оборудование: Материалы XX Междунар. науч.-техн. конф. М., 2014.
---
Для цитирования: Шмелев В.Е., Абрамченко Е.В., Сбитнев С.А. Сравнительный анализ результатов экспериментального исследования несимметричных режимов работы трехфазного трансформатора и данных полнофазного моделирования // Вестник МЭИ. 2018. № 3. С. 51—59. DOI: 10.24160/1993-6982-2018-3-51-59.
#
1. VorotnitskiyV.E. Snizhenie Poter' Elektroenergii v elektricheskih Setyah Rossii — Strategicheskiĭ Put' Povysheniya ih Energeticheskoĭ Effektivnosti. Doklad na IV Mezhdunar. Forume po Energoeffektivnosti i Energosberezheniyu ENES [Elektron. Resurs] http://www. sro-eo.ru/data/Doki_SRO/enes2015_doklad_see_vve.pdf. (Data Obrashcheniya 05.06.2017). (in Russian).
2. Buchkina E.A. i dr. Dinamika Izmeneniy Pokazateley Kachestva Elektroenergii Raspredelitel'nyh Setey OAO «MOESK». Upravlenie Kachestvom Elektricheskoĭ Energii: Sb. Trudov Mezhdunar. Nauch.- prakt. Konf. M.: Raduga, 2014. (in Russian).
3. Zhelezko Yu.S. Poteri Elektroenergii. Reaktivnaya Moshchnost'. Kachestvo Elektroenergii. M.: ENAS, 2009. (in Russian).
4. Teoreticheskie Osnovy Elektrotekhniki. T. 1. Osnovy Teorii Tsepey / pod Red. P.A. Ionkina. M.: Vysshaya Shkola, 1965. (in Russian).
5. Ul'yanov S.A. Elektromagnitnye Perekhodnye Protsessy V Elektricheskih Sistemah. M.: Energiya, 1970. (in Russian).
6. Sbitnev S.A., SHmelevV.E., AbramchenkoE.V. Modelirovanie Trekhfaznoy Elektricheskoy Seti Malogo Naselennogo Punkta. Vestnik MPEI. 2015;6:44 — 47. (in Russian).
7. Abramchenko E.V., Sbitnev S.A., Shmelev V.E. Raschet Testovoy Raspredelitel'noy Seti na Osnove Trekh- faznyh Skhem Zameshcheniya. Sb. Nauch.-tekhn. Sta-tey Sotrudnikov Gruppy Kompaniy «Rosseti». M.: Elektroenergiya. Peredacha i Raspredelenie, 2017. (in Russian).
8. Guseynov A.M, Ibragimov F.Sh. Raschet v Faznyh Koordinatah Nesimmetrichnyh Ustanovivshihsya i Perekhodnyh Rezhimov v Slozhnyh Elektroenergeticheskih Sistemah. Elektrichestvo. 2012;5:10 — 17. (in Russian).
9. Soldatov V.A., Baranov A.A. Analiticheskaya Model' Transformatorov «Zvezda – Treugol'nik» i «Zvezda – Zvezda s Nulem» v Faznyh Koordinatah. Dostizheniya Nauki i Tekhniki APK. 2011;1:76 — 79. (in Russian).
10. Zakaryukin V.P., Kryukov A.V., Shul'gin M.S. Parametricheskaya Identifikatsiya Silovyh Transformatorov. Vestnik IrGTU. 2011;12:219 — 227. (in Russian).
11. Peng Xiao, David C. Yu, Wei Yan. A Unified Three-Phase Transformer Model for Distribution Load Flow Calculations. IEEE Trans. Power Syst. 2006;21;1: 153 — 159.
12. Izudin Džafić, Rabih A. Jabr, Hans-Theo Neisius. Transformer Modeling for Three-phase Distribution Network Analysis. IEEE Trans. Power Syst. 2015;30;5: 2604 — 2611.
13. Qiong Wu, Saeed Jazebi, Francisco de Leon. Parameter Estimation of Three-phase Transformer Models for Low-frequency Transient Studies from Terminal Measurements. IEEE Trans. Magnetics. 2017;53;7:1 — 8.
14. Bruskin D.E., Zorohovich A.E., Hvostov V.S. Elektricheskie Mashiny. Ch. 1. M.: Vysshaya Shkola, 1979. (in Russian).
15. Seleznev V.Yu., Sbitnev S.A., Shmelev V.E., Goryushin Yu.A. Novyy Matrichnyy Metod Modelirovaniya Rezhimov Magistral'nyh i Raspredelitel'nyh Elektricheskih Setey po Trekhfaznym Skhemam Zameshcheniya. Intellektual'naya Elektroenergetika, Avtomatika, Vysokovol'tnoe Oborudovanie: Materialy XX Mezhdunar. Nauch.-tekhn. Konf. M., 2014.
---
For citation: Shmelev V.E., Abramchenko E.V., Sbitnev S.A. A Comparative Analysis of the Results from Experimental Investigation of Imbalanced Operation Modes of a Three-phase Transformer and Full-phase Simulation Data. MPEI Vestnik. 2018;3:51—59. (in Russian). DOI: 10.24160/1993-6982-2018-3-51-59.

