Studying the Integral Characteristics of a Cooling System Equipped with a Thermoelectric Module

Authors

  • Всеволод [Vsevolod] Станиславович [S.] Волгин [Volgin]
  • Алексей [Aleksey] Феликсович [F.] Гиневский [Ginevskiy]

DOI:

https://doi.org/10.24160/1993-6982-2018-4-8-16

Keywords:

Peltier effect, thermoelectric module, integral characteristics, numerical simulation

Abstract

Thermoelectric modules (TEM) are devices using which it is possible to implement either thermoelectric cooling due to the Peltier effect or electricity generation due to the Seebeck effect. In the first case, electric energy is directly converted into thermal energy, and in the second case, thermal energy is converted into electricity. Recent advances in the development of new thermoelectric nanostructured materials with characteristics significantly better than those found in bulk ones, prompted an increased interest in cooling and electricity generation through the use of thermoelectric devices. Special engineering design techniques are used in developing thermoelectric systems. However, such techniques only yield successful results for some simple designs. If the design of a thermoelectric device is non-trivial, some approximations have to be applied for the design, which seriously affects the accuracy of the result. The existing engineering methods for calculating the parameters and integral characteristics of TEMs involve a large number of simplifications and shortcomings, due to which the calculated integral characteristics of a TEM can differ significantly from their actual ones. In the field of thermoelectric devices, numerical simulation has to be used to solve various problems, in particular, for studying and evaluating promising designs of thermoelectric devices. The article presents the mathematical model of a cooling system equipped with TEMs. Numerical solution of the conjugate heat transfer equations describing the cooling system operation is obtained. It is shown that the TEM operating parameters are influenced by a number of factors that should preferably be taken into account in temperature distribution calculations. It is also shown that under real conditions the integral TEM operation parameters may differ considerably from those calculated according to the standard engineering procedures. Owing to its containing a rigorous body of mathematics, the developed model makes it possible to calculate the TEM parameters and integral characteristics under the real conditions of their operation.

Author Biographies

Всеволод [Vsevolod] Станиславович [S.] Волгин [Volgin]

Workplace

Low Temperatures Dept., NRU MPEI

Occupation

Ph.D.-student

Алексей [Aleksey] Феликсович [F.] Гиневский [Ginevskiy]

Science degree:

Ph.D. (Techn.)

Workplace

Low Temperatures Dept., NRU MPEI

Occupation

Assistant Professor

References

1. Vineis C.J., Shakouri A., Majumdar A. Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features // Adv. Mater. 2010. V. 22:3970—3980.

2. Venkatasubramanian R., Siivola E., Colpitts T. Thin-film Thermoelectric Devices with High Room-temperature Figures of Merit // Nature. 2001. V. 413 (6856):597—602.

3. Biswas K., Blum I., Hogan T. High-performance Bulk Thermoelectrics with All-scale Hierarchical Architectures. Nature. 2012. V. 489:414—418.

4. Funahashi R., Matsubara I., Ikut H. An Oxide Single Crystal with High Thermoelectric Performance in Air // Jpn. J. Appl. Phys. 2000. V. 39:1127.

5. Li-Dong Zhao e. a. Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Сrystals // Nature. 2014. V. 508:373—377.

6. Sandoz-Rosado E., Stevens R.J. Experimental Characterization of Thermoelectric Modules and Comparison with Theoretical Models for Power Generation // J. Electronic Materials. 2009. V. 38. No. 7:1239—1244.

7. Jieyi Long, Memik S.O., Grayson M. Optimization of an On-chip Active Cooling System Based on Thin-film Thermoelectric Coolers // Proc. Electrical Eng. And Computer Sci. Conf. Dresden, 2010:117—122.

8. Wang P., Bar-Cohen A., Yang B. Analytical Modeling of Silicon Thermoelectric Microcooler // J.Appl. Phys. 2006. V. 100:014501.

9. Bjork R., Christensen D.V., Eriksen, D., Pryds N. Analysis of the Internal Heat Losses in a Thermoelectric Generator // Intern. J. Thermal Sci. 2014. V. 85:12—20.

10. Булат Л.П., Бузин Е.В. Термоэлектрические охлаждающие устройства. СПб.: СПбГУНиПТ, 2001.
---
Для цитирования: Волгин В.С., Гиневский А.Ф. Исследование интегральных характеристик охлаждающей системы с термоэлектрическим модулем // Вестник МЭИ. 2018. № 4. С. 8—16. DOI: 10.24160/1993-6982-2018-4-8-16.
#
1. Vineis C.J., Shakouri A., Majumdar A. Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features. Adv. Mater. 2010;22:3970—3980.

2. Venkatasubramanian R., Siivola E., Colpitts T. Thin-film Thermoelectric Devices with High Room- temperature Figures of Merit. Nature. 2001;413 (6856):597—602.

3. Biswas K., Blum I., Hogan T. High-performance Bulk Thermoelectrics with All-scale Hierarchical Archi- tectures. Nature. 2012;489:414—418.

4. Funahashi R., Matsubara I., Ikut H. An Oxide Single Crystal with High Thermoelectric Performance in Air. Jpn. J. Appl. Phys. 2000;39:1127.

5. Li-Dong Zhao e. a. Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Сrystals. Nature. 2014;508:373—377.

6. Sandoz-Rosado E., Stevens R.J. Experimental Characterization of Thermoelectric Modules and Comparison with Theoretical Models for Power Generation. J. Electronic Materials. 2009;38;7:1239—1244.

7. Jieyi Long, Memik S.O., Grayson M. Optimization of an On-chip Active Cooling System Based on Thin- film Thermoelectric Coolers. Proc. Electrical Eng. and Computer Sci. Conf. Dresden, 2010:117—122.

8. Wang P., Bar-Cohen A., Yang B. Analytical Modeling of Silicon Thermoelectric Microcooler . J. Appl. Phys. 2006;100:014501.

9. Bjork R., Christensen D.V., Eriksen, D., Pryds N. Analysis of the Internal Heat Losses in a Thermoelectric Generator . Intern. J. Thermal Sci. 2014;85:12—20.

10. Bulat L.P., Buzin E.V. Termoelektricheskie Ohlazhdayushchie Ustroystva. SPb.: SPbGUNiPT, 2001. (in Russian).
---
For citation: Volgin V.S., Ginevsky A.F. Studying the Integral Characteristics of a Cooling System Equipped with a Thermoelectric Module. MPEI Vestnik. 2018;4:8—16. (in Russian). DOI: 10.24160/1993-6982-2018-4-8-16.

Published

2018-08-01

Issue

Section

Power Engineering, Metallurgic and Chemical Machinery (05.04.00)