Providing Adequate Cooling at an Extremely Loaded Data Center
DOI:
https://doi.org/10.24160/1993-6982-2018-4-36-43Keywords:
CFD-modeling data center, cooling, ventilation, air conditioning, crypto currencyAbstract
At present, we are witnessing active efforts aimed at developing so-called mining centers (computing centers for mining crypto currency) on the basis of different solutions. These computing centers have at their heart video cards or special processor modules. The main problem faced at these centers consists in ensuring efficient cooling of the computing modules under the conditions of their being placed with the maximum possible density in a limited space. This requirement is stemming from the need of minimizing the expenditures for the infrastructure of crypto currency mining facilities. Ensuring efficient cooling of these centers is quite a topical issue because the computing modules charged with the task of producing crypto currency operate at their ultimately high loading and suffer from overheating to a much more severe extent than during operation in usual computing centers. The article presents a concept of arranging high-performance computation systems intended for dealing with crypto currencies under the conditions of being placed in a limited space. An algorithm ensuring stable cooling of computation systems solely by means of fans without the need of using vapor-compression cycle based chilling equipment is described. The thermal mathematical model of a computation system for producing crypto currency developed in the PHOENICS software package environment is presented. A criterion for estimating the density of placing video cards for producing crypto currency is suggested.
References
2. Занегин И.Н. Охлаждение ЦОД. М.: Риттал Академия, 2009.
3. Барсков А. От PUE к WUE // Журнал сетевых решений/LAN. 2014. № 1. [Офиц. сайт] https://www.osp.ru/ lan/2014/01/13039318 (дата обращения 10.09.2017).
4. Основы корпусного охлаждения: вентиляторы [Электрон. ресурс] http://www.thg.ru/desktop/vybor_komponentov_dlya_kompyutera_2/print.html (дата обращения 01.09.2017).
5. Исаченко В.П. и др. Теплопередача. М.: Энергия, 1975.
6. Баркалов Б.В. и др. Внутренние санитарно-технические устройства. Ч. 3. Вентиляция и кондиционирование воздуха. М.: Стройиздат, 1992.
7. Сергиевский Э.Д., Хомченко Н.В., Овчинников Е.В. Расчет локальных параметров течения и теплообмена в каналах. М.: Изд-во МЭИ, 2001.
---
Для цитирования: Арбатский А.А., Глазов В.С. Обеспечение охлаждения в дата-центре сверхвысокой загрузки // Вестник МЭИ. 2018. № 4. С. 36—43. DOI: 10.24160/1993-6982-2018-4-36-43.
#
1. SN 512—78. Instruktsiya po Proektirovaniyu Zdaniy i Pomeshcheniy dlya Elektronno-vychislitel'nyh Mashin. (in Russian).
2. Zanegin I.N. Ohlazhdenie TSOD. M.: Rittal Akademiya, 2009. (in Russian).
3. Barskov A. Ot PUE k WUE. Zhurnal setevyh resheniy/LAN. 2014;1. [Ofits. Sayt] https://www.osp.ru/ lan/2014/01/13039318 (Data Obrashcheniya 10.09.2017). (in Russian).
4. Osnovy Korpusnogo Ohlazhdeniya: Ventilyatory [Elektron. Resurs] http://www.thg.ru/desktop/vybor_ komponentov_dlya_kompyutera_2/print.html (data Obra
shcheniya 01.09.2017). (in Russian).
5. Isachenko V.P. i dr. Teploperedacha. M.: Energiya,1975. (in Russian).
6. Barkalov B.V. i dr. Vnutrennie Sanitarno-tekhnicheskie Ustroystva. Ch. 3. Ventilyatsiya I Konditsionirovanie Vozduha. M.: Stroizdat, 1992. (in Russian).
7. Sergievskiy E.D., Homchenko N.V., Ovchinnikov E.V. Raschet Lokal'nyh Parametrov Techeniya i Teploobmena v Kanalah. M.: Izd-vo MPEI, 2001. (in Russian).
---
For citation: Arbatsky А.А., Glazov V.S. Providing Adequate Cooling at an Extremely Loaded Data Center. MPEI Vestnik. 2018;4:36—43. (in Russian). DOI: 10.24160/1993-6982-2018-4-36-43.

