Improving the Aerodynamic Performance of Wide-Angle Flat Diffusers

Authors

  • Сергей [Sergey] Сергеевич [S.] Дмитриев [Dmitriev]
  • Саед Мохамед Солиман Осман [Saed M.S.O.] Мохамед [Mokhamed]
  • Артем [Artem] Владимирович [V.] Барбашин [Barbashin]

DOI:

https://doi.org/10.24160/1993-6982-2018-6-19-26

Keywords:

flow separation, energy loss, velocity field, pressure pulsations, flow control, diffuser

Abstract

In designing the transition pipes from the gas turbine output diffuser to the heat-recovery steam generator used in modern combined-cycle power plants, the compactness requirements are in some cases the governing ones. As a result, channels having non-optimal aerodynamics are used, including those in the form of wide-angle diffusers, the current in which may contain zones with flow separation and a sharply non-uniform field of outlet velocities. Such a flow pattern downstream of the transition pipe at the heat-recovery steam generator inlet significantly impairs the heat transfer in the steam generator’s tube bundles located first along the flow. Among the aerodynamic methods used to modify the flow pattern in diffusers, methods that allow their performance to be improved significantly without additional energy expenditures are of great interest. A flow separation delaying method involving the use of so-called vortex generators as received wide use. These vortex generators are made in the form of flat or profiled plates installed directly on the diffuser channel wall perpendicular to it. As the current flows over the plates, near-wall vortices are generated, which intensify turbulent heat transfer in the boundary layer and make this layer more resistant to separation. The article presents the results from an experimental study of the method for reducing energy losses and equalizing the field of outlet velocities in wide-angle diffuser channels by installing a short plate in the channel inlet section in parallel to the deflected wall. With such an arrangement, the plate is not only a generator of vortices that transfer additional energy to the boundary layer, but also transmits an additional momentum to the wall due to flow deflection. The investigations were carried out in an open-type wind tunnel with the dimensionless velocity values at the diffuser inlet not exceeding 0.3. The values of total energy loss coefficients were obtained in moving the plate both along and perpendicular to the diffuser channel deflecting wall. The plate optimal location in the channel inlet section in terms of the greatest reduction of energy losses has been determined. The velocity distribution patterns in the diffuser outlet section for regimes with and without flow separation have been obtained. It is shown that in the case of separation flow modes in the diffuser, the use of a plate installed in it can significantly reduce the total energy loss, increase the diffuser effect, and equalize the velocity field in the channel outlet section of due to partial or complete elimination of flow separation. During the experiments, static pressure pulsations on the deflected wall were measured in five sections along its length. It is shown that in case of separation flow modes, the plate installed in the inlet section decreases the intensity of the near-wall pulsating motion and, hence, the dynamic loads on the channel walls. The obtained results allow us to recommend the investigated flow control method in a wide-angle diffuser for being used in the transition pipes from the gas turbine to the combined cycle plant’s heat-recovery steam generator in the course of their modernizations and repairs to equalize the velocity field at the heat-recovery steam generator inlet, to decrease the energy losses, and to reduce the dynamic loads.

Author Biographies

Сергей [Sergey] Сергеевич [S.] Дмитриев [Dmitriev]

Science degree:

Ph.D. (Techn.)

Workplace

Steam and Gas Turbines named A.V. Shcheglyaev Dept., NRU MPEI

Occupation

Assistant Professor

Саед Мохамед Солиман Осман [Saed M.S.O.] Мохамед [Mokhamed]

Workplace

Steam and Gas Turbines named A.V. Shcheglyaev Dept., NRU MPEI

Occupation

Ph.D.-student

Артем [Artem] Владимирович [V.] Барбашин [Barbashin]

Workplace

Steam and Gas Turbines named A.V. Shcheglyaev Dept., NRU MPEI

Occupation

Student

References

1. Дейч М.Е., Зарянкин А.Е. Газодинамика диффузоров и выхлопных патрубков. М.: Энергия, 1970.

2. Мигай В.К., Гудков Э.И. Проектирование и расчет выходных диффузоров турбомашин. Л.: Машиностpоение, 1981.

3. Бычкова Л.А. Экспериментальное исследование каналов с предотрывным состоянием турбулентного пограничного слоя // ИФЖ. 1971. Т. 21. № 3. С. 518—525.

4. Зарянкин А.Е., Грибин В.Г., Дмитриев С.С. Сравнительная эффективность диффузорных каналов при различных методах аэродинамического воздействия на поток // Известия высш. учеб. заведений. Серия «Энергетика». 1991. № 4. С. 67—73.

5. Краснов Н.Ф., Кошевой В.Н. Управление и стабилизация в аэродинамике. М.: Высшая школа, 1978.

6. Edward C. e. a. Boundary Layer Separation Control on a Flat Plate with Adverse Pressure Gradients Using VortexGenerators // Proc. ASME Turbo Expo 2006: Power for Land, Sea and Air. Barcelona, 2006. V. 3. Pp. 1211—1220.

7. Ahmad K.A., Watterson J.K., Cole J.S., Briggs I. Sub Boundary Layer Vortex Generator Control of a Separated Diffuser Flow // Proc. 35 th AIAA Fluid Dynamics Conf. and Exhibit. Toronto, 2005. P. 1.

8. Törnbloma O., Johansson A.V. A Reynolds Stress Closure Description of Separation Control with Vortex Generators in a Plane Asymmetric Diffuser // Phys. Fluids. 2007. V. 19. No. 115108. Pр. 1—15.

9. Reichert B.A., Wendt B.J. An Experimental Investigation of S-duct Flow Control Using Arrays of Low Profile Vortex Generators // Proc. 31 st Aerospace Sciences Meeting and Exhibit Sponsored by the AIAA Reno. Nevada, 1993. P. 93-0018.

10. Sullerey R.K., Mishra S., Pradeep A.M. Application of Boundary Layer Fences and Vortex Generators in Improving Performance of S-Duct Diffusers // ASME. 2002. V. 124. Pр. 136—142 .

11. Paul A.R., Ranjan P., Patel V.K., Jain A. Comparative Studies on Flow Control in Rectangular S-duct Diffuser Using Submerged-vortex Generators // Aerospace Sci. and Techn. 2013. V. 28. Pр. 332—343.

12. Santner C. e. a. The Application of Low-profile Vortex Generators in an Intermediate Turbine Diffuser // J. Turbomachinery. 2012. V. 134. Pр. 1—9.

13. Zhang Y., Hu S., Zhang X.F., Benner M., Vlasic E. Flow Control in an Aggressive Inter-turbine Duct Using Low Profile Vortex Generators // Proc. ASME Turbo Expo. Copenhagen, 2012. Pp. 1609—1619.

14. Senseney M. B., Buter T.A., Bowersox R.D.W. Flow Structure and Performance Characterization of an Offset Diffuser with and without Vortex Generator Jets // Proc. 31 st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit. San Diego, 1995. Pp. 1—12.

15. Pradeep A.M, Sullerey R.K. Secondary Flow Control in a Circular S-duct Diffuser Using Vortex Generator Jets // Proc. 2 nd AIAA Flow Control Conf. Portland, 2004. P. 2615.

16. Зарянкин А.Е., Грибин В.Г., Дмитриев С.С. Повышение эффективности плоских диффузоров путем установки пластин параллельно отклоняющимся стенкам канала // Энергетика. 1994. № 9—10. С. 72—81.

17. Клайн С., Рейнольдс У., Шрауб Ф., Ранстэдлер П. Структура турбулентных пограничных слоев // Механика. 1969. Т. 1116. № 4. С. 41—78.

18. Хинце И.О. Турбулентность. Ее механизм и теория. М.: Физматлит, 1963.

19. Фрост У., Моулден Т. Турбулентность. Принципы и применения. М.: Мир, 1980.

20. Курбацкий А.Ф. Лекции по турбулентности. Ч. 2 Моделирование турбулентных течений. Новосибирск: Изд-во НГУ, 2001.

21. Репик Е.У., Соседко Ю.П. Управление уровнем турбулентности потока. М.: Физматлит, 2002.

22. Репик Е.У., Соседко Ю.П. Турбулентный пограничный слой. Методика и результаты экспериментальных исследований. М.: Физматлит, 2007.
---
Для цитирования: Дмитриев С.С., Мохамед С.М.С.О., Барбашин А.В. Повышение аэродинамической эффективности широкоугольных плоских диффузоров // Вестник МЭИ. 2018. № 6. С. 19—26. DOI: 10.24160/1993-6982-2018-6-19-26.
#
1. Deych M.E., Zaryankin A.E. Gazodinamika Diffuzorov i Vyhlopnyh Patrubkov. M.: Energiya, 1970. (in Russian).

2. Migay V.K., Gudkov E.I. Proektirovanie i Raschet Vyhodnyh Diffuzorov Turbomashin. L.: Mashinostpoenie, 1981. (in Russian).

3. Bychkova L.A. Eksperimental'noe Issledovanie Kanalov s Predotryvnym Sostoyaniem Turbulentnogo Pogranichnogo Sloya. IFZH. 1971;21;3:518—525. (in Russian).

4. Zaryankin A.E., Gribin V.G., Dmitriev S.S. Sravnitel'naya Effektivnost' Diffuzornyh Kanalov pri Razlichnyh Metodah Aerodinamicheskogo Vozdeystviya na Potok. Izvestiya Vyssh. Ucheb. Zavedeniy. Seriya «Energetika». 1991;4:67—73. (in Russian).

5. Krasnov N.F., Koshevoy V.N. Upravlenie i Stabilizatsiya v Aerodinamike. M.: Vysshaya shkola, 1978. (in Russian).

6. Edward C. e. a. Boundary Layer Separation Control on a Flat Plate with Adverse Pressure Gradients Using Vortex Generators. Proc. ASME Turbo Expo 2006: Power for Land, Sea and Air. Barcelona, 2006;3:1211—1220.

7. Ahmad K.A., Watterson J.K., Cole J.S., Briggs I. Sub Boundary Layer Vortex Generator Control of a Separated Diffuser Flow. Proc. 35 th AIAA Fluid Dynamics Conf. and Exhibit. Toronto, 2005:1.

8. Törnbloma O., Johansson A.V. A Reynolds Stress Closure Description of Separation Control with Vortex Generators in a Plane Asymmetric Diffuser. Phys. Fluids. 2007;19;115108:1—15.

9. Reichert B.A., Wendt B.J. An Experimental Investigation of S-duct Flow Control Using Arrays of Low Profile Vortex Generators. Proc. 31 st Aerospace Sciences Meeting and Exhibit Sponsored by the AIAA Reno. Nevada, 1993:93-0018.

10. Sullerey R.K., Mishra S., Pradeep A.M. Application of Boundary Layer Fences and Vortex Generators in Improving Performance of S-Duct Diffusers. ASME. 2002;124. Pр. 136—142 .

11. Paul A.R., Ranjan P., Patel V.K., Jain A. Comparative Studies on Flow Control in Rectangular S-duct Diffuser Using Submerged-vortex Generators. Aerospace Sci. and Techn. 2013;28:332—343.

12. Santner C. e. a. The Application of Low-profile Vortex Generators in an Intermediate Turbine Diffuser. J. Turbomachinery. 2012;134:1—9.

13. Zhang Y., Hu S., Zhang X.F., Benner M., Vlasic E. Flow Control in an Aggressive Inter-turbine Duct Using Low Profile Vortex Generators. Proc. ASME Turbo Expo. Copenhagen, 2012:1609—1619.

14. Senseney M. B., Buter T.A., Bowersox R.D.W. Flow Structure and Performance Characterization of an Offset Diffuser with and without Vortex Generator Jets. Proc. 31 st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit. San Diego, 1995:1—12.

15. Pradeep A.M, Sullerey R.K. Secondary Flow Control in a Circular S-duct Diffuser Using Vortex Generator Jets. Proc. 2 nd AIAA Flow Control Conf. Portland, 2004:2615.

16. Zaryankin A.E., Gribin V.G., Dmitriev S.S. Povyshenie Effektivnosti Ploskih Diffuzorov Putem Ustanovki Plastin Parallel'no Otklonyayushchimsya Stenkam Kanala. Energetika. 1994;9—10:72—81. (in Russian).

17. Klayn S., Reynol'ds U., Shraub F., Ranstedler P. Struktura Turbulentnyh Pogranichnyh Sloev. Mekhanika. 1969;1116;4:41—78. (in Russian).

18. Hintse I.O. Turbulentnost'. Ee mekhanizm I Teoriya. M.: Fizmatlit, 1963. (in Russian).

19. Frost U., Moulden T. Turbulentnost'. Printsipy I Primeneniya. M.: Mir, 1980. (in Russian).

20. Kurbatskiy A.F. Lektsii po Turbulentnosti. Ch. 2 Modelirovanie Turbulentnyh Techeniy. Novosibirsk: Izdvo NGU, 2001. (in Russian).

21. Repik E.U., Sosedko Yu.P. Upravlenie Urovnem Turbulentnosti Potoka. M.: Fizmatlit, 2002.

22. Repik E.U., Sosedko Yu.P. Turbulentnyy Pogranichnyy Sloy. Metodika i Rezul'taty Eksperimental'nyh Issledovaniy. M.: Fizmatlit, 2007. (in Russian).
---
For citation: Dmitriev S.S., Mokhamed S.M.S.O., Barbashin A.V. Improving the Aerodynamic Performance of Wide-Angle Flat Diffusers. MPEI Vestnik. 2018;6:19—26. (in Russian). DOI: 10.24160/1993-6982-2018-6-19-26.

Published

2018-12-01

Issue

Section

Power Engineering, Metallurgic and Chemical Machinery (05.04.00)