Wind Shear Profile Models Derived from the Kamchatka Peninsula Meteorological Masts Data

Authors

  • Галина [Galina] Владимировна [V.] Дерюгина [Deryugina]
  • Дмитрий [Dmitriy] Алексеевич [A.] Чернов [Chernov]
  • Михаил [Mikhail] Георгиевич [G.] Тягунов [Tyagunov]
  • Надежда [Nadezhda] Василевна [V.] Алиходжина [Alikhodzhina]

DOI:

https://doi.org/10.24160/1993-6982-2019-1-35-42

Keywords:

wind speed, exponential function, wind shear profile, Hellman exponent, mathematical model, wing power plant

Abstract

The article describes two wind shear profile (WSP) models constructed in the form of empirical dependencies of the Hellman exponent mean values from the wind speed at the minimal met mast measurement height.

The WSP models were developed using the wind speed observation series with 10-min averaging intervals obtained for the minimum and maximum measurement heights from four met masts in the Kamchatka Peninsula, which were then subjected to generalization and putting in a systematic order. The empirical dependencies (WSP models) are applicable for modeling the average wind speed at any height up to 100 m for different source data averaging intervals (month, hour, 10 min) in territories similar to the four met mast sites on the Kamchatka Peninsula in physical and geographical conditions (terrain relief and roughness, and type of water surfaces: river, internal or external sea, etc.).

The second model seems to be of special value for further application due to its ability to model the average wind speed for short intervals of time (from 10 min to several hours) to any height, a feature that is of importance in designing wind power plants (WPPs) intended for operation in small local power systems (LPS). In developing this model, the wind turbulence was taken into account in addition to the terrain physical and geographical conditions. To this end, empirical and approximating dependences of the average turbulence intensity from the average wind speed in gradations (at 1 m/s steps) at the minimum measurement height of four met masts were developed.

The article describes the methods, verification and approximation criteria, and adopted assumptions based on which the WSP models were developed. The determinacy coefficient R2 was taken as the empirical dependence approximation validity indicator. The developed WSP models were verified in accordance with the criterion of relative deviation of the compared average wind speed values at the met mast maximum measurement height calculated from the actual series of data observed on met masts and using the modeled data, which should not exceed the permissible speed measurement error on the met mast (0.1 m/s) for the considered interval.

The effect the selected WSP model has on the design power output produced by a single WPP was analyzed only for one WPP site that coincides with the Ust Kamchatsk met mast site. Investigations for other met mast sites were not performed due to lack of WPP operational data. It is shown that the source data averaging interval should duly be taken into account in choosing the WSP model.

Author Biographies

Галина [Galina] Владимировна [V.] Дерюгина [Deryugina]

Senior Lecturer of Hydropower and Renewable Energy Sources Dept., NRU MPEI

Дмитрий [Dmitriy] Алексеевич [A.] Чернов [Chernov]

Ph.D.-student of Hydropower and Renewable Energy Sources Dept., NRU MPEI

Михаил [Mikhail] Георгиевич [G.] Тягунов [Tyagunov]

Dr.Sci. (Techn.), Professor of Hydropower and Renewable Energy Sources Dept., NRU MPEI

Надежда [Nadezhda] Василевна [V.] Алиходжина [Alikhodzhina]

Student, Engineer of Hydropower and Renewable Energy Sources Dept., NRU MPEI, e-mail: resckator@mail.ru

References

1. Васьков А.Г., Дерюгина Г.В., Малинин Н.К., Пугачев Р.В. Ветроэнергетика. М.: МЭИ, 2016.
2. Белокрылова Т.А. Об изменении скоростей ветра на территории СССР // Труды ВНИИГМИ-МЦД.1989. № 150. С. 38—47.
3. Зубарев В.В., Минин В.А., Степанов И.Р. Использование энергии ветра в районах Севера: состояние, условия эффективности, перспективы. Л.: Наука, 1989.
4. Бызова Н.Л., Шнайдман В.А., Бондаренко В.Н. Расчет вертикального профиля ветра в пограничном слое атмосферы по наземным данным // Метеорология и гидрология.1987. № 11. С. 75—83.
5. Николаев В.Г., Ганага С.В., Кудряшов Ю.И. Национальный кадастр ветроэнергетических ресурсов России и методические основы их определения. М.: Атмограф, 2008.
6. Васьков А.Г., Дерюгина Г.В., Тягунов М.Г., Чернов Д.А. Исследование моделей вертикального профиля ветра на территории Дальневосточного федерального округа // Альтернативная энергетика и экология. 2015. № 10—11. С. 63—74.
7. Васьков А.Г., Дерюгина Г.В., Чернов Д.А. Моделирование вертикального профиля ветра по данным аэрологических метеостанций России // Энергосбережение — теория и практика: Труды VI Междунар. школы-семинара молодых ученых и специалистов. М.: МЭИ, 2012.
8. Wind Energy Resource Atlas of the United States. Washington: Pacific Northwest Laboratory, 1987.
9. Wegley H.L., Ramsdell J.V., Orgill M.M., Drake R.L. Siting Handbook for Small Wind Energy Conversion Systems. Richland: Battelle Pacific Northwest Labs, 1980.
10. Ellis D.W., Keenan M.G. Development of Wind Shear Models and Determination of Wind Shear Hazards. Federal Aviation Administration, Systems Research & Development Service, 1978.
11. Свидетельство № 2012620870 о гос. регистрации базы данных. Специализированная база данных «Вертикальный профиль ветра» / А.Г. Васьков, Г.В. Дерюгина, М.Г. Тягунов, Д.А. Чернов. М.: МЭИ, 2012.
12. Justus C., Mikhail A. Height Variations of Wind Speed and Wind Distributions Statistics // Geophys. Res. Lett. 1976. No. 3. Pp. 251—264.
13. ГОСТ Р 54418.1—2012 (МЭК 61400-1:2005). Возобновляемая энергетика. Ветроэнергетика. Установки ветроэнергетические. Ч. 1. Технические требования.
14. Борисенко М.М. Вертикальные профили ветра и температуры в нижних слоях атмосферы // Труды Главной геофизической обсерватории им. А.И. Воейкова. 1974. Вып. 320.
15. Борисенко М.М., Соколова С.Н., Корнюшин О.Г. Исследование климатических характеристик ветроэнергетических ресурсов // Гидрометеорология и метеорология: обзорная информация. 1987. № 4.
16. Новый аэроклиматический справочник пограничного слоя атмосферы над СССР. М.: Гидрометеоиздат, 1986. Т. 2.
17. Measuring Network of Wind Energy Institutes [Офиц. сайт] http://www.measnet.com (дата обращения 15.08.2018).
18. KWT300-Brochure English [Электрон. ресурс] http://www.komaihaltec.co.jp/english/renewable_energy/pdf/KWT300_Brochure10.pdf (дата обращения 15.08.2018).
19. KWT300-Brochure English (2) [Электрон. ресурс] http://www.komaihaltec.co.jp/english/renewable_ energy/pdf/KWT300_Brochure_2.pdf (дата обращения 15.08.2018).
---
Для цитирования: Дерюгина Г.В., Чернов Д.А., Тягунов М.Г., Алиходжина Н.В. Модели вертикального профиля ветра по данным ветроизмерительных комплексов полуострова Камчатка // Вестник МЭИ. 2019. № 1. С. 35—42. DOI: 10.24160/1993-6982-2019-1-35-42.
#
1. Vas'kov A.G., Deryugina G.V., Malinin N.K., Pugachev R.V. Vetroenergetika. M.: MEI, 2016. (in Russian).
2. Belokrylova T.A. Ob Izmenenii Skorostey Vetra na Territorii SSSR. Trudy VNIIGMI-MTSD. 1989;150:38—47. (in Russian).
3. Zubarev V.V., Minin V.A., Stepanov I.R. Ispol'zovanie Energii Vetra v Rayonakh Severa: Sostoyanie, Usloviya Effektivnosti, Perspektivy. L.: Nauka, 1989. (in Russian).
4. Byzova N.L., Shnaydman V.A., Bondarenko V.N. Raschet Vertikal'nogo Profilya Vetra v Pogranichnom Sloe Atmosfery po Nazemnym Dannym. Meteorologiya i Gidrologiya. 1987;11:75—83. (in Russian).
5. Nikolaev V.G., Ganaga S.V., Kudryashov Yu.I. Natsional'nyy Kadastr Vetroenergeticheskikh Resursov Rossii i Metodicheskie Osnovy ikh Opredeleniya. M.: Atmograf, 2008. (in Russian).
6. Vas'kov A.G., Deryugina G.V., Tyagunov M.G., Chernov D.A. Issledovanie Modeley Vertikal'nogo Profilya Vetra na Territorii Dal'nevostochnogo Federal'nogo Okruga. Al'ternativnaya Energetika i Ekologiya. 2015;10—11:63—74. (in Russian).
7. Vas'kov A.G., Deryugina G.V., Chernov D.A. Modelirovanie Vertikal'nogo Profilya Vetra po Dannym Aerologicheskikh Meteostantsiy Rossii. Energosberezhenie — Teoriya i Praktika: Trudy VI Mezhdunar. Shkoly-seminara Molodykh Uchenykh i Spetsialistov. M.: MEI, 2012. (in Russian).
8. Wind Energy Resource Atlas of the United States. Washington: Pacific Northwest Laboratory, 1987.
9. Wegley H.L., Ramsdell J.V., Orgill M.M., Drake R.L. Siting Handbook for Small Wind Energy Conversion Systems. Richland: Battelle Pacific Northwest Labs, 1980.
10. Ellis D.W., Keenan M.G. Development of Wind Shear Models and Determination of Wind Shear Hazards. Federal Aviation Administration, Systems Research & Development Service, 1978.
11. Svidetel'stvo № 2012620870 o Gos. Registratsii Bazy Dannykh. Spetsializirovannaya Baza Dannykh «Verti- kal'nyy profil' vetra» / A.G. Vas'kov, G.V. Deryugina, M.G. Tyagunov, D.A. Chernov. M.: MEI, 2012. (in Russian).
12. Justus C., Mikhail A. Height Variations of Wind Speed and Wind Distributions Statistics. Geophys. Res. Lett. 1976;3:251—264.
13. GOST R 54418.1—2012 (MEK 61400-1:2005). Vozobnovlyaemaya Energetika. Vetroenergetika. Ustanovki Vetroenergeticheskie. Ch. 1. Tekhnicheskie Trebovaniya. (in Russian).
14. Borisenko M.M. Vertikal'nye Profili Vetra i Temperatury v Nizhnikh Sloyakh Atmosfery. Trudy Glavnoy Geofizicheskoy Observatorii im. A.I. Voeykova. 1974;320. (in Russian).
15. Borisenko M.M., Sokolova S.N., Kornyushin O.G. Issledovanie Klimaticheskikh Kharakteristik Vetroenergeticheskikh Resursov. Gidrometeorologiya i Meteorologiya: Obzornaya Informatsiya. 1987;4. (in Russian).
16. Novyy Aeroklimaticheskiy Spravochnik Pogranichnogo Sloya Atmosfery nad SSSR. M.: Gidrometeoizdat, 1986. T. 2. (in Russian). (in Russian).
17. Measuring Network of Wind Energy Institutes [Ofits. Sayt] http://www.measnet.com (Data Obrashcheniya 15.08.2018).
18. KWT300-Brochure English [Elektron. Resurs] http://www.komaihaltec.co.jp/english/renewable_energy/ pdf/KWT300_Brochure10.pdf (Data Obrashcheniya 15.08.2018).
19. KWT300-Brochure English (2) [Elektron. Resurs] http://www.komaihaltec.co.jp/english/renewable_energy/ pdf/KWT300_Brochure_2.pdf (Data Obrashcheniya 15.08.2018).
---
For citation: Deryugina G.V., Chernov D.A., Tyagunov M.G., Alikhodzhina N.V. Wind Shear Profile Models Derived from the Kamchatka Peninsula Meteorological Masts Data. MPEI Vestnik. 2019;1:35—42. (in Russian). DOI: 10.24160/1993-6982-2019-1-35-42.ghg

Published

2018-01-15

Issue

Section

Renewable Energy Installations (05.14.08)