Universal Approach to Studying AC/DC Boost Converters

Authors

  • Дмитрий [Dmitriy] Александрович [A.] Сорокин [Sorokin]
  • Сергей [Sergey] Иосифович [I.] Вольский [Volskiy]

DOI:

https://doi.org/10.24160/1993-6982-2019-2-65-72

Keywords:

three-phase converter, power factor, Vienna-rectifier, chopper, interrupter

Abstract

Three-phase AC/DC boost converters performing power factor correction are widely used at present. They ensure electromagnetic compatibility of the converter with the network and decrease the network load by making the phase currents proportional and co-phase with the phase voltages. Typically, a three-phase AC/DC boost converter contains input power reactors and a three-phase bridge rectifier. Better power factor value is achieved in such devices by applying three choppers based on bidirectional power switches or power transistor legs. However, a large number of controllable devices and components, the current states of which depend on their pre-switching state, is a factor that adds much difficulty to studying the electrical processes in the converter.

A principle of reducing the number of equivalent circuits necessary for studying the electrical processes in the converters under consideration is described. The proposed principle follows from assumptions based on the target operating mode of an AC/DC boost converter. Three converters have been investigated by applying this principle of reducing the number of equivalent circuits with using the electric circuit theory (Kirchhoffs equations or the mesh-current method) techniques. Examples of applying the proposed approach for studying three-phase AC/DC boost converters (so-called Vienna rectifiers) are given.

The proposed approach made it possible to decrease the number of analyzed equivalent circuits down to eight ones, and the conclusions drawn from an analysis of the obtained equivalent circuits were used to select the best configuration of a three-phase AC/DC boost converter.

The obtained results are of interest for developers of three-phase power factor correction converters, uninterruptible power sources, frequency converters, and other AC/DC converters complying with more stringent requirements for the power factor, efficiency, and device prime cost.

Author Biographies

Дмитрий [Dmitriy] Александрович [A.] Сорокин [Sorokin]

Design Engineer of LLС «Transconverter», e-mail: sorokin@transconverter.ru

Сергей [Sergey] Иосифович [I.] Вольский [Volskiy]

Dr.Sci. (Techn.), General Director of LLС «Transconverter», e-mail:volsky-s@yandex.ru

References

1. Мелешин В.И., Овчинников Д.А. Управление транзисторными преобразователями электроэнергии. М.: Техносфера, 2011.
2. Зиновьев Г.С. Силовая электроника. М: Юрайт, 2015.
3. Dyakin N., Dyakin S., Volskiy S. Application of Multi-converter in the Peak Power Corrector // Proc. Power Conversion Intelligent Motion Conf. Nuremberg, 2013. Pp. 1643—1650.
4. Kolar J.W. Friedli T. The Essence of Three- phase PFC Rectifier Systems. Pt. I // IEEE Trans. Power Electronics. 2013. V. 28. No. 1. Рp. 176—198.
5. Вилков А.Е. Исследование и разработка трёхфазных активных выпрямителей с пофазным управлением: автореф. дис. … канд. техн. наук. М.: МЭИ, 2013.
6. Чаплыгин Е., Тьинь В.Т., Ан Н.Х. Виенна-выпрямитель — трехфазный корректор коэффициента мощности // Силовая электроника. 2006. № 1. С. 20—23.
7. Краснов И.Ю., Черемисин В.Н. Проектирование активного корректора коэффициента мощности и имитационное моделирование его работы // Известия Томского политехн. ун-та. 2009. Т. 314. № 4. С. 92—97.
8. Чаплыгин Е.Е., Вилков А.Е. Трехфазные активные выпрямители с пофазным управлением // Практическая силовая электроника. 2011. № 3 (43). С. 14—20.
9. Брылина О.Г., Гельман М.В. Исследование трехфазного активного выпрямителя // Электротехнические системы и комплексы. 2014. № 1 (22). С. 47—50.
10. Kajiwara K., Kuboyama S., Higuchi T., Kolar J.W., Kurokawa F. A New Digital Current Control AC-DC Converter for Wind Turbine // Proc. Intern. Conf. Renewable Energy Research and Appl. Austin, 2016. Pp. 559—571.
11. Dandan Z., Jiuhe W., Dongjin S. Passivity Based Power Control of Three-phase Three-switch Vienna Rectifier // Proc. III Intern. Conf. Machinery, Materials and Information Techn. Appl. 2015. Pp. 1127—1132.
12. Попов В.П. Основы теории цепей. М.: Юрайт, 2013.
13. Бурков А.Т. Электронная техника и преобразователи. М.: Транспорт, 1999.
---
Для цитирования: Сорокин Д.А., Вольский С.И. Универсальный подход к исследованию AC/DC-преобразователей повышающего типа // Вестник МЭИ. 2019. № 2. С. 65—72. DOI: 10.24160/1993-6982-2019-2-65-72.
#
1. Meleshin V.I., Ovchinnikov D.A. Upravlenie Tranzistornymi Preobrazovatelyami Elektroenergii. M.: Tekhnosfera, 2011. (in Russian).
2. Zinov'ev G.S. Silovaya Elektronika. M: Yurayt, 2015. (in Russian).
3. Dyakin N., Dyakin S., Volskiy S. Application of Multi-converter in the Peak Power Corrector. Proc. Power Conversion Intelligent Motion Conf. Nuremberg, 2013:1643—1650.
4. Kolar J.W. Friedli T. The Essence of Three- phase PFC Rectifier Systems. Pt. I. IEEE Trans. Power Electronics. 2013;28;1:176—198.
5. Vilkov A.E. Issledovanie i Razrabotka Trekhfaznykh Aktivnykh Vypryamiteley s Pofaznym Upravleniem: Avtoref. Dis. … Kand. Tekhn. Nauk. M.: MEI, 2013. (in Russian).
6. Chaplygin E., T'in' V.T., An N.Kh. Vienna-vypryamitel' — Trekhfaznyy Korrektor Koeffitsienta Moshchnosti. Silovaya Elektronika. 2006;1:20—23. (in Russian).
7. Krasnov I.Yu., Cheremisin V.N. Proektirovanie Aktivnogo Korrektora Koeffitsienta Moshchnosti i Imitatsionnoe Modelirovanie Ego Raboty. Izvestiya Tomskogo Politekhn. Un-ta. 2009;314;4:92—97. (in Russian).
8. Chaplygin E.E., Vilkov A.E. Trekhfaznye Aktivnye Vypryamiteli s Pofaznym Upravleniem. Prakticheskaya Silovaya Elektronika. 2011;3 (43):14—20. (in Russian).
9. Brylina O.G., Gel'man M.V. Issledovanie trekhfaznogo aktivnogo vypryamitelya. Elektrotekhnicheskie Sistemy i Kompleksy. 2014;1 (22):47—50. (in Russian).
10. Kajiwara K., Kuboyama S., Higuchi T., Kolar J.W., Kurokawa F. A New Digital Current Control AC-DC Converter for Wind Turbine. Proc. Intern. Conf. Renewable Energy Research and Appl. Austin, 2016:559—571.
11. Dandan Z., Jiuhe W., Dongjin S. Passivity Based Power Control of Three-phase Three-switch Vienna Rectifier. Proc. III Intern. Conf. Machinery, Materials and Information Techn. Appl. 2015:1127—1132.
12. Popov V.P. Osnovy Teorii Tsepey. M.: Yurayt, 2013. (in Russian).
13. Burkov A.T. Elektronnaya Tekhnika i Preobrazovateli. M.: Transport, 1999. (in Russian).
---
For citation: Sorokin D.A., Volskiy S.I. Universal Approach to Studying AC/DC Boost Converters. Bulletin of MPEI. 2019;2:65—72. (in Russian). DOI: 10.24160/1993-6982-2019-2-65-72.

Published

2018-06-13

Issue

Section

Electrical Complex and Systems (05.09.03)