Experimental Investigation of an Algorithm for Monitoring the State of Instrument Voltage Transformer Insulation on a Network Segment Physical Model

Authors

  • Владимир [Vladimir] Мушегович [M.] Геворкян [Gevorkyan]
  • Константин [Konstantin] Владимирович [V.] Краюшкин [Krayushkin]

DOI:

https://doi.org/10.24160/1993-6982-2019-2-80-86

Keywords:

voltage transformer, power plant, monitoring, short circuit fault, emergency

Abstract

The article presents the results from investigating the power plant generator voltage circuit segment physical model made using two high-voltage voltage transformers. A possible algorithm for monitoring the state of voltage transformer insulation in the power plant generator voltage circuit, which is intended for predicting insulation malfunctions, is studied on the basis of a physical modeling approach. Malfunctions resulting from a short circuit fault in the high-voltage winding of type ZNOL single-phase instrument voltage transformers with the grounded neutral caused by gradual degradation of their cast insulation are investigated on the physical model. The short circuit fault is modeled by short-circuiting the transformer’s primary winding taps. Also, the effect the short-circuiting of turns in the primary high-voltage winding of one transformer has on the currents in the primary windings and voltages in the secondary windings of both devices is considered.

The results from experimental investigation into the electrical characteristics of the generator voltage network segment’s physical model have confirmed that there is a growth of current in the transformer primary winding at a constant output voltage at the secondary winding. This is necessary for validating the algorithm of detecting a short circuit fault development process in the high-voltage winding. It has been experimentally shown that the effect of the instrument transformer output voltage remaining constant in short-circuiting part of primary winding turns with the secondary winding operating in the no-load mode still takes place also when the voltage transformer shifts to operate under nonlinear magnetic core magnetization conditions, as was expected from the numerical simulation results.

The results from analyzing the effect the secondary winding load has on the transformer operation mode are presented. A numerical assessment of the effect the load resistance has on the instrument voltage transformer output voltage with taking into account the presence of short-circuited turns in its primary winding has shown that there is a correlation between the measured characteristic of the network phase (phase voltage) and the state of the transformer high voltage winding insulation. This correlation can supplement the list of cases with incorrect operation of relay protection devices.

Author Biographies

Владимир [Vladimir] Мушегович [M.] Геворкян [Gevorkyan]

Ph.D. (Techn.), Professor of Computing Machines, Systems and Networks Dept., NRU MPEI, e-mail: GevorkianVM@mpei.ru

Константин [Konstantin] Владимирович [V.] Краюшкин [Krayushkin]

Software engineer of JSC «Laboratory of information technologies», e-mail: jango-kvk@gmail.com

References

1. Геворкян В.М., Краюшкин К.В. Алгоритм мониторинга состояния изоляции измерительных трансформаторов напряжения в цепи генераторного напряжения электрических станций // Измерительная техника. 2017. № 3 C. 47—51.
2. Геворкян В.М. и др. О повреждениях трансформаторов напряжения в цепях генераторного напряжения электростанций // Электрические станции. 2014. № 1. С. 43—49.
3. Дымков А.М., Кибель В.М., Тишенин Ю.В.Трансформаторы напряжения. М.: Энергия, 1975.
4. Fitzpatrick D. Analog Design and Simulation Using OrCAD Capture and PSpice. Amsterdam: Elsevier, 2012.
5. Пат. № 2589752 РФ. Способ диагностирования технического состояния измерительных ТН в цепи генераторного напряжения электростанций / Геворкян В.М., Краюшкин К.В. // Бюл. изобрет. 2016. № 19.
6. Вольтметр универсальный цифровой В7-40. Техническое описание и инструкция по эксплуатации. Ч. 1. [Электрон. ресурс] kip-guide.ru›docs/9985-03.pdf (дата обращения 30.04.2018).
7. Руководство по эксплуатации осциллографа серии TDS1000B/2000B [Электрон. ресурс] https://ru. tek.com/?utm_source=yandex&utm_medium=ppc&utm_ content=brand&utm_campaign=tektronix&yclid=78980526 1851495070 (дата обращения 30.04.2018).
8. Дьяков А.Ф. и др. Электромагнитная совместимость в электроэнергетике и электротехнике. М.: Энергоатомиздат, 2003.
9. Шапаренко В.С. Краткий анализ дефектов и случаев неправильной работы устройств релейной защиты и автоматики на разной элементной базе в региональной сетевой компании // Электро. 2017. № 2. С. 28—35.
10. Ухов В.И., Соколова И.С. Система сбора и представления информации о срабатывании релейной защиты и автоматики // Электрические станции. 2011. № 9. С. 43—45.
11. Степанов Ю.А., Овчинников А.Г. Трансформаторы напряжения контроля изоляции 6…10 кВ. Сравнительный анализ моделей // Новости Электротехники. 2003. № 6 (24).
12. Кадомская К.П., Лаптев О.А. Антирезонансные трансформаторы напряжения. Эффективность применения // Новости Электротехники. 2006. № 6 (42).
---
Для цитирования: Геворкян В.М., Краюшкин К.В. Экспериментальные исследования алгоритма мониторинга состояния изоляции из¬мерительных трансформаторов напряжения на макете участка цепи // Вестник МЭИ. 2019. N° 2. С. 80—86. DOI: 10.24160/1993-6982¬2019-2-80-86.
#
1. Gevorkyan V.M., Krayushkin K.V. Algoritm Monitoringa Sostoyaniya Izolyatsii Izmeritel'nykh Transformatorov Napryazheniya v Tsepi Generatornogo Napryazheniya Elektri- cheskikh Stantsiy. Izmeritel'naya Tekhnika. 2017;3:47—51. (in Russian).
2. Gevorkyan V.M. i dr. O Povrezhdeniyakh Transformatorov Napryazheniya v Tsepyakh Generatornogo Napryazheniya Elektrostantsiy. Elektricheskie Stantsii. 2014;1:4 3—49. (in Russian).
3. Dymkov A.M., Kibel' V.M., Tishenin Yu.V. Transformatory napryazheniya. M.: Energiya, 1975. (in Russian).
4. Fitzpatrick D. Analog Design and Simulation Using OrCAD Capture and PSpice. Amsterdam: Elsevier, 2012.
5. Pat. № 2589752 RF. Sposob Diagnostirovaniya Tekhnicheskogo Sostoyaniya Izmeritel'nykh TN v Tsepi Generatornogo Napryazheniya Elektrostantsiy. Gevorkyan V.M., Krayushkin K.V. Byul. Izobret. 2016;19. (in Russian).
6. Vol'tmetr Universal'nyy Tsifrovoy V7-40. Tekhnicheskoe Opisanie i Instruktsiya po Ekspluatatsii. Ch. 1. [Elektron. Resurs] kip-guide.ru›docs/9985-03.pdf (Data Obrashcheniya 30.04.2018). (in Russian).
7. Rukovodstvo po Ekspluatatsii Ostsillografa Se-rii TDS1000B/2000B [Elektron. Resurs] https://ru.tek.com/? utm_ source=yandex&utm_medium=ppc&utm_content=brand &utm_ campaign=tektronix&yclid=789805261851495070 (Data Obrashcheniya 30.04.2018). (in Russian).
8. D'yakov A.F. i dr. Elektromagnitnaya Sovmestimost' v Elektroenergetike i Elektrotekhnike. M.: Energoatomizdat, 2003. (in Russian).
9. Shaparenko V.S. Kratkiy Analiz Defektov i Sluchaev Nepravil'noy Raboty Ustroystv Releynoy Zashchity i Avtomatiki na Raznoy Elementnoy Baze v Regional'noy Setevoy Kompanii. Elektro. 2017;2:28—35. (in Russian).
10. Ukhov V.I., Sokolova I.S. Sistema Sbora i Predstavleniya Informatsii o Srabatyvanii Releynoy Zashchity i Avtomatiki. Elektricheskie Stantsii. 2011;9:43—45. (in Russian).
11. Stepanov Yu.A., Ovchinnikov A.G. Transformatory Napryazheniya Kontrolya Izolyatsii 6…10 kV. Sravnitel'nyy Analiz Modeley. Novosti Elektrotekhniki. 2003;6 (24). (in Russian).
12. Kadomskaya K.P., Laptev O.A. Antirezonansnye Transformatory Napryazheniya. Effektivnost' Primeneniya. Novosti Elektrotekhniki. 2006;6 (42). (in Russian).
---
For citation: Gevorkyan V.M., Krayushkin K.V. Experimental Investigation of an Algorithm for Monitoring the State of Instrument Voltage Transformer Insulation on a Network Segment Physical Model. Bulletin of MPEI. 2019;2:80—86. (in Russian). DOI: 10.24160/1993-6982-2019-2-80-86.

Published

2018-04-06

Issue

Section

Theoretical Electrical Engineering (05.09.05)