On Integer Solutions of a Class of Differential-Difference Equations
DOI:
https://doi.org/10.24160/1993-6982-2019-2-118-120Keywords:
differential-difference equations, integer functionsAbstract
Problems dealt with in a number of theoretical computer science matters are reduced to studying the solutions of algebraic differential-difference equations. By now, only linear equations of this sort have been studied to a fairly good extent. In the general case, a search for and an analysis of their solutions still involve insurmountable difficulties. Therefore, in a number of studies, solutions belonging to a predetermined class of functions (e.g. integer ones) are only considered. In Russia and abroad, results describing (to some or other degree) solutions for certain classes of algebraic differential equations have been obtained in this problem area. However, no results are available for nonlinear algebraic differential-difference equations, even for quite narrow classes of functions, e.g., polynomials.
The article describes possible solutions (which are integer functions of a finite order) for nonlinear algebraic differential-difference equations of a fairly general kind. It is shown that equations of a certain structure can have integer solutions only in the form of quasipolynomials.
The proof is based on using the techniques of dealing with integer functions that has recently been developed by the authors.
References
2. Гельфонд А.О. Трансцендентные и алгебраические числа. М.: Гостехиздат, 1953.
3. Рочев И.П. Обобщение теорем Гельфонда и Вальдшмидта о целозначных целых функциях // Математический сборник. 2011. Т. 202. № 8. С. 117—138.
4. Welter M. Sur un Theorem de Gelfond-Selberg et Une Conjecture de Bundschu-Shiokawa // Acta Arith. 2005. V. 116. No. 4. Pp. 363—385.
5. Горбузов В.Н. Целые решения алгебраических дифференциальных уравнений. Гродно: ГРБУ, 2006.
6. Левин Б.Я. Распределение корней целых функций. М.: ГИТТЛ, 1956.
7. Подкопаева В.А., Янченко А.Я. О целых решениях одного класса нелинейных разностных уравнений // Естественные и технические науки. 2017. № 7. С. 106—108.
8. Янченко А.Я., Подкопаева В.А. О целых функциях — решениях одного класса алгебраических дифференциальных уравнений // Сибирские электронные математические известия. 2018. Т. 15. С. 1284—1291.
---
Для цитирования: Подкопаева В.А., Фёдоров Ю.С., Янченко А.Я. О целых решениях одного класса дифференциально-разностных уравнений // Вестник МЭИ. 2019. № 2. С. 118—120. DOI: 10.24160/1993-6982-2019-2-118-120.
#
1. Golubev V.V. Lektsii po Analiticheskoy Teorii Differentsial'nykh Uravneniy. M.: GITTL, 1950. (in Russian).
2. Gel'fond A.O. Transtsendentnye i Algebraicheskie Chisla. M.: Gostekhizdat, 1953. (in Russian).
3. Rochev I.P. Obobshchenie Teorem Gel'fonda i Val'dshmidta o Tseloznachnykh Tselykh Funktsiyakh. Matematicheskiy Sbornik. 2011;202;8:117—138. (in Russian).
4. Welter M. Sur un Theorem de Gelfond-Selberg et Une Conjecture de Bundschu-Shiokawa. Acta Arith. 2005; 116;4:363—385.
5. Gorbuzov V.N. Tselye Resheniya Algebraicheskikh Differentsial'nykh Uravneniy. Grodno: GRBU, 2006. (in Russian).
6. Levin B.Ya. Raspredelenie Korney Tselykh Funktsiy. M.: GITTL, 1956. (in Russian).
7. Podkopaeva V.A., Yanchenko A.Ya. O Tselykh Resheniyakh Odnogo Klassa Nelineynykh Raznostnykh Uravneniy. Estestvennye i Tekhnicheskie Nauki. 2017;7: 106—108. (in Russian).
8. Yanchenko A.Ya., Podkopaeva V.A. O Tselykh Funktsiyakh — Resheniyakh Odnogo Klassa Algebraicheskikh Differentsial'nykh Uravneniy. Sibirskie Elektronnye Matematicheskie Izvestiya. 2018;15:1284—1291. (in Russian).
---
For citation: Podkopaeva V.A., Fedorov Yu.S., Yanchenko A.Ya. On Integer Solutions of a Class of Differential-Difference Equations. Bulletin of MPEI. 2019;2:118—120. (in Russian). DOI: 10.24160/1993-6982-2019-2-118-120.

