Improving the Accuracy of Weighing Bulk Materials in a Dispenser On-Stream Flow Meter with Two Strain Gauges

Authors

  • Денис [Denis] Викторович [V.] Шилин [Shilin]
  • Дмитрий [Dmitriy] Александрович [A.] Шестов [Shestov]
  • Павел [Павел] Евгеньевич [E.] Ганин [Ganin]

DOI:

https://doi.org/10.24160/1993-6982-2019-3-116-123

Keywords:

strain gauge, fuzzy controller, adaptive filter, metering, flow, bulk material

Abstract

A weighing algorithm for an on-stream dispenser flow meter based on two strain gauges is developed and investigated. The main objectives are to achieve more accurate dosing of bulk materials and to prevent the influence of uneven material distribution along the weighing axis. Better dosing accuracy is achieved by installing strain gages on the material feeding side and using an intelligent conveyor belt speed control system, which is the main element in the developed weighing algorithm. The conveyor belt speed is adjusted by means of a fuzzy controller, because the controlled plant is a complex system, and the controllers synthesized according to the classical automatic control theory fail to meet the response speed requirements. The results from testing the selected kinematic design clearly show adequate performance of the fuzzy controller. Namely, when the feed of bulk material decreases, so does the conveyor belt speed, and vice versa. As a result, it becomes possible to decrease the relative measurement error to less than 0.5%.

The developed device can be used in the food and agricultural-industrial complexes, in the civil construction, and chemical industries, and in other branches of the national economy, namely, in the processes involving metering and measuring the flow of bulk material in continuous technological processes. When used in combination with a feeder, on-stream flow meters can be used for high-precision weighted metering of various bulk materials. The product is supplied by a sluice or screw feeder, which can additionally be equipped with a smaller diameter screw for operation in rough/precise modes.

Author Biographies

Денис [Denis] Викторович [V.] Шилин [Shilin]

Ph.D. (Techn.), Senior Lecturer of Control and Informatics Dept., NRU MPEI, e-mail: deninfo@mail.ru

Дмитрий [Dmitriy] Александрович [A.] Шестов [Shestov]

Leading Engineer of Control and Informatics Dept., NRU MPEI, e-mail: shestov.d.a@gmail.com

Павел [Павел] Евгеньевич [E.] Ганин [Ganin]

Ph.D.-student, Leading Engineer of Control and Informatics Dept., NRU MPEI, e-mail: skaz04nik@bk.ru

References

1. Першина С.В., Каталымов А.В., Однолько В.Г., Першин В.Ф. Весовое дозирование зернистых материалов. М.: Машиностроение, 2009.
2. Шестов Д.А. Анализ процессов дозирования и взвешивания сыпучих материалов // Энергообеспечение и энергосбережение в сельском хозяйстве: Труды Междунар. науч.-техн. конф. 2012. Т. 3. С. 109—115.
3. Шестов Д.А. Учетно-дозирующая система управления электрифицированным технологическим процессом приготовления кормосмесей // Там же. Т. 5. С. 110—115.
4. Siemens. Weighing and Feeding Guide. Operation Manual [Офиц сайт] www.siemens.com (дата обращения 14.07.2018).
5. Agg-net. Load-Out And Dosing Control Systems. Operation manual [Офиц сайт] www.agg-net.com (дата обращения 14.07.2018).
6. In-Jae Kang, Joon Ho Kwon, Sung-Min Moon, Daehie Hong. A Control System Using Butterworth Filter for Loss-in-Weight Feeders // J. Korean Soc. Precision Eng. 2014. V. 31. No. 10. Pp. 905—911.
7. Siva Vardhan D.S.V., Yeole Sh. Development of an Automatic Monitoring and Control System for the Objects on the Conveyor Belt // Proc. Intern. Conf. Man and Machine Interfacing. 2015. V. 12. Pp. 1—10.
8. Aleksandrović S., Damnjanović V. Volume Flow Measurement of Bulk Solids on Conveyor Belts // Intern. J. Transport and Logistics. 2013. Iss. 27. Pp. 1—4.
9. SICK Bulkscan. Volume Flow Measurement of Bulk Material on Conveyor Belts. Operation Manual. Bristol, 2001.
10. Hauβecker H., Geiβler P. Handbook of Computer Vision and Applications. San Diego: Academic press, 1999.
---
Для цитирования: Шилин Д.В., Шестов Д.А., Ганин П.Е. Повышение точности взвешивания сыпучих материалов на поточном расходомере-дозаторе с двумя тензометрическими датчиками // Вестник МЭИ. 2019. № 3. С. 116—123. DOI: 10.24160/1993-6982-2019-3-116-123.
#
1. Pershina S.V., Katalymov A.V., Odnol'ko V.G., Pershin V.F. Vesovoe Dozirovanie Zernistykh Materialov. M.: Mashinostroenie, 2009. (in Russian).
2. Shestov D.A. Analiz Protsessov Dozirovaniya i Vzveshivaniya Sypuchikh Materialov. Energoobespechenie i Energosberezhenie v Sel'skom Khozyaystve: Trudy Mezhdunar. Nauch.-tekhn. Konf. 2012;3:109—115.(in Russian).
3. Shestov D.A. Uchetno-doziruyushchaya Sistema Upravleniya Elektrifitsirovannym Tekhnologicheskim Protsessom Prigotovleniya Kormosmesey. Tam zhe;5: 110—115. (in Russian).
4. Siemens. Weighing and Feeding Guide. Operation Manual [Ofits Sayt] www.siemens.com (Data Obrashcheniya 14.07.2018).
5. Agg-net. Load-Out And Dosing Control Systems. Operation manual [Ofits Sayt] www.agg-net.com (Data Obrashcheniya 14.07.2018).
6. In-Jae Kang, Joon Ho Kwon, Sung-Min Moon, Daehie Hong. A Control System Using Butterworth Filter for Loss-in-Weight Feeders. J. Korean Soc. Precision Eng. 2014;31;10:905—911.
7. Siva Vardhan D.S.V., Yeole Sh. Development of an Automatic Monitoring and Control System for the Objects on the Conveyor Belt. Proc. Intern. Conf. Man and Machine Interfacing. 2015;12:1—10.
8. Aleksandrović S., Damnjanović V. Volume Flow Measurement of Bulk Solids on Conveyor Belts. Intern. J. Transport and Logistics. 2013;27:1—4.
9. SICK Bulkscan. Volume Flow Measurement of Bulk Material on Conveyor Belts. Operation Manual. Bristol, 2001.
10. Hauβecker H., Geiβler P. Handbook of Computer Vision and Applications. San Diego: Academic press, 1999.
---
For citation: Shilin D.V., Shestov D.A., Ganin P.E. Improving the Accuracy of Weighing Bulk Materials in a Dispenser On-Stream Flow Meter with Two Strain Gauges. Bulletin of MPEI. 2019;3:116—123. (in Russian). DOI: 10.24160/1993-6982-2019-3-116-123.

Published

2018-08-15

Issue

Section

Automation and Control of Technological Processes and Production (05.13.06)