The Plasma Heat Load in the Diverter of a Tokamak Nuclear Fusion Reactor
DOI:
https://doi.org/10.24160/1993-6982-2019-4-22-33Keywords:
plasma-thermal tests, thermonuclear reactor materials, tungsten, diverter, thermonuclear reactor, tokamakAbstract
The problem of the limiting plasma heat load on the first wall in a tokamak fusion reactor is considered. It is pointed out, based on a review of available experimental data, that the major part of the heat flux from the plasma falling on the wall is absorbed by the surface in a narrow (a few millimeters wide) radial layer in the zone where the separatrix comes in contact with the diverter plates. The revealed empirical regularity relating to existence of an upper limit for the averaged heat load on the tokamak first wall is a factor generating the need to solve the challenging matters of ensuring stability of a stationary plasma discharge in a tokamak fusion reactor. The mechanisms imposing limits on the stationary discharge duration in a tokamak have not been investigated as yet. In the literature, only a few mechanisms are reviewed, including the influence of erosion material films formed on the tokamak first wall surface.
In the article, the heat load on the critical area of the contact between the material surface and a plasma separatrix or the last closed magnetic surface is analyzed. Such analysis makes possible to elaborate additional criteria for estimating the limiting plasma heat load on the walls during steady-state operation of a tokamak fusion reactor: the main contribution in this effect is due to the heat flux limit on the diverter plates in a narrow (of a millimeter scale) zone of interaction between the separatrix and material surface. The limiting heat flux to the diverter plates depends on the conditions on the surface, including the degree of its roughness, porosity, and arcing effects. For a stationary tokamak fusion reactor, it should be expected that the plasma-wall interaction is mainly governed by the collective effects developing on space-time scales that vary by 6--12 orders of magnitude. The multiscale nature of the plasma-wall interaction in a tokamak reactor implies the need of using power laws to describe the effects.
An interrelation (in power law form) between the electron temperature and plasma density near the separatrix is proposed proceeding from the results of analyzing the limiting heat fluxes on the wall. Such dependence should be expected in the H operation modes of a stationary tokamak fusion reactor with the limit discharge parameters, in which significant changes occur in the diverter plate surface profiles and properties influencing the heat transfer through the plasma sheath layer, including arcing effects.
It is advisable to further extend the base of experimental data for carrying out a generalizing analysis of the interrelation between the electron temperature and plasma density near the separatrix. With such data at hand, it will become possible to develop approaches to control the plasma-wall interaction with a view to achieve the optimal conditions for maintaining stationary discharge in a tokamak reactor.
References
2. Deng G.Z. e. a. Study of Plasma Current Effect on Divertor Power Footprint Widths Through Experiments and Modeling In East L-Mode Plasmas // Phys. Plasmas. 2017. V. 24. No. 4. P. 042508.
3. Oha Y.-K. e. a. Status of the High Performance and Long Pulse Operation in KSTAR and Exploring the Issues in ITER and K-DEMO // Proc. IX IAEA Techn. Meeting on Steady State Operation of Magnetic Fusion Devices. Vienna, 2017.
4. Будаев В.П. Обобщенная масштабная инвариантность и лог-пуассоновская статистика турбулентности краевой плазмы в токамаке Т-10 // Физика плазмы. 2008. T. 34. № 10. C. 867—884.
5. Будаев В.П., Савин С.П., Зеленый Л.М. Наблюдения перемежаемости и обобщённого самоподобия в турбулентных пограничных слоях лабораторной и магнитосферной плазмы: на пути к определению количественных характеристик переноса // УФН. 2011. Т. 181. С. 905—952.
6. Makowski M.A. e. a. Scaling of the Tokamak Near the Scrape-off Layer H-mode Power Width and Implications for ITER // Nuclear Fusion. 2013. V. 53. No. 9. P. 093031.
7. Goldston R.J. Heuristic Drift-based Model of the Power Scrape-off Width in Low-gas-puff H-mode Tokamaks // Nuclear Fusion. 2012. V. 52. No. 1. P. 013009.
8. Loarte A. e a. Progress on the Application of Elm Control Schemes to ITER Scenarios from the Non-active Phase to DT Operation // Nuclear Fusion. 2014. V. 54. No. 3. P. 033007.
9. Будаев В.П. Результаты испытаний вольфрамовых мишеней дивертора при мощных плазменно-тепловых нагрузках, ожидаемых в ИТЭР и токамаках реакторного масштаба (обзор) // Вопросы атомной науки и техники. Серия «Термоядерный синтез». 2015. Т. 38. № 4. С. 5—33.
10. Будаев В.П., Химченко Л.Н. Фрактальная нано- и микроструктура осаждённых пленок в термоядерных установках // Вопросы атомной науки и техники. Серия «Термоядерный синтез». 2008. № 3. С. 34—61.
11. Brezinsek S. Plasma-surface Interaction in the Be/W Environment: Conclusions Drawn from the JET-ILW for ITER // J. Nuclear Materials. 2015. V. 463. Pp. 11—21.
12. Balden M. е. a. Blistering and Re-deposition on Tungsten Exposed to ASDEX Upgrade Divertor Plasma // J. Nuclear Materials. 2013. V. 438. Pp. 220—223.
13. Labombard B. e. a. Divertor Heat Flux Footprints in EDA H-mode Discharges on Alcator C-mod // J. Nuclear Materials. 2011. V. 415. Pp. 349—352.
14. Budaev V.P. e. a. Tungsten Recrystallization and Cracking under ITER-Relevant Heat Loads // J. Nuclear Materials. 2015. V. 463. Pp. 237—240.
15. Будаев В.П., Химченко Л.Н. О фрактальной структуре осажденных пленок в токамаке // ЖЭТФ. 2007. Т. 131. Вып. 4. С. 711—728.
16. Budaev V.P., Khimchenko L.N. Fractal Growth of Deposited Films in Tokamaks // Physica A. 2007. V. 382. No. 2. Pp. 359—377.
17. Budaev V.P. Stochastic Clustering of the Surface at the Interaction of a Plasma with Materials // JETP Letters. 2017. V. 105. No. 5. Pp. 307—313.
18. Budaev V.P. Stochastic Clustering of Material Surface under High-heat Plasma Load // Phys. Letters A. 2017. V. 381. No. 43. Pр. 3706—3713.
19. Мартыненко Ю.В., Будаев В.П., Грашин С.А., Шестаков Е.А. Эрозия вольфрама в токамаке при срыве тока // Краткие сообщения по физике. 2017. Т. 44. № 6. С. 45—52.
20. Likonen J. e. a. Structural Studies of Deposited Layers on Jet MKII-SRP Inner Divertor Tiles // J. Nuclear Materials. 2007. V. 363—365. Pp. 190—195.
21. Мартыненко Ю.В. Движение расплавленного слоя металла и капельная эрозия при воздействии плазменных потоков, характерных для переходных режимов ИТЭР // Вопросы атомной науки и техники. Серия «Термоядерный синтез». 2014. T. 37. № 2. С. 53—59.
22. Barabasi A.L., Stanley H.E. Fractal Concepts in Surface Growth. Cambridge: Cambridge Univ. Press, 1995.
23. Barengolts S., Mesyats G., Tsventoukh M. The Ecton Mechanism of Unipolar Arcing in Magnetic Confinement Fusion Devices // Nucl. Fusion. 2010. V. 50. No. 12. P. 125004.
24. Matějíček J. e. a. ELM-induced arcing on tungsten fuzz in the COMPASS divertor region // J. Nuclear Materials. 2017. V. 492. Pp. 204—212.
25. Budaev V.P. Innovative Potential of Plasma Technology // J. Physics. Conf. Series. 2017. V. 891. No. 1. P. 012301.
26. Khimchenko L. e. a. // Proc. 27th IEEE Symp. Fusion Eng. Shanghai, 2017. P. 153.
27. Takamura S. Initial Stage of Fiber-form Nanostructure Growth on Refractory Metal Surfaces with Helium Plasma Irradiation // Plasma and Fusion Research. 2014. V. 9. P. 1302007.
28. Takamura S. Power Transmission Factor Through the Sheath in Deuterium Plasmas for Virgin as Well as Nanostructured Tungsten // J. Nuclear Materials. 2015. V. 463. Pp. 325—328.
29. Будаев В.П. и др. Плазменная установка НИУ «МЭИ» для испытаний тугоплавких металлов и создания высокопористых материалов нового поколения // Вопросы атомной науки и техники. Cерия «Термоядерный синтез». 2017. Т. 40. Вып. 3. C. 23—36.
30. Stangeby P.C. The Plasma Boundary of Magnetic Fusion Devices. Bristol: Institute of Physics, 2000.
31. Porter G.D. The Role of Radial Particle Flow on Power Balance in DIII-D // Phys. Plasmas. 1998. V. 5. No. 12. Pp. 4311—4320.
32. Porter G.D. e. a. Analysis of Separatrix Plasma Parameters Using Local And Multi-machine Databases // J. Nuclear Materials. 1999. V. 266—269. Pp. 917—921.
33. Budaev V.P. e. a. Power Laws in a Problem of Plasma-surface Interaction // Proc. 33rd EPS Conf. Plasma Phys. Rome, 2006. V. 30I. P. 4.108.
34. Будаев В.П. Применение новых материалов со стохастической нано- и микроструктурой поверхности: управление турбулентными потоками в плазме и аэродинамике // Взаимодействие плазмы с поверхностью: Сб. науч. трудов. XXI конф. М.: НИЯУ «МИФИ», 2018. С. 126—129.
--
Для цитирования: Будаев В.П. Плазменно-тепловая нагрузка в диверторе термоядерного реактора-токамака // Вестник МЭИ. 2019. № 4. С. 22—33. DOI: 10.24160/1993-6982-2019-4-22-33.
#
1. Mirnov S.V. P H/S—tokamak’s Limit as a Result of the Plasma Sheath Breakdown. Plasma Phys. Control. Fusion. 2016;58:022001.
2. Deng G.Z. e. a. Study of Plasma Current Effect on Divertor Power Footprint Widths Through Experiments and Modeling In East L-Mode Plasmas. Phys. Plasmas. 2017;24; 4:042508.
3. Oha Y.-K. e. a. Status of the High Performance and Long Pulse Operation in KSTAR and Exploring the Issues in ITER and K-DEMO. Proc. IX IAEA Techn. Meeting on Steady State Operation of Magnetic Fusion Devices. Vienna, 2017.
4. Budaev V.P. Obobshchennaya Masshtabnaya Invariantnost' I Log-puassonovskaya Statistika Turbulentnosti Kraevoy Plazmy v Tokamake T-10. Fizika Plazmy. 2008; 34;10:867—884. (in Russian).
5. Budaev V.P., Savin S.P., Zelenyy L.M. Nablyudeniya Peremezhaemosti i Obobshchennogo Samopodobiya v Turbulentnyh Pogranichnyh Sloyah Laboratornoy i Magnitosfernoy Plazmy: na Puti k Opredeleniyu Kolichestvennyh Harakteristik Perenosa. UFN. 2011;181:905—952. (in Russian).
6. Makowski M.A. e. a. Scaling of the Tokamak Near the Scrape-off Layer H-mode Power Width and Implications for ITER. Nuclear Fusion. 2013;53;9:093031.
7. Goldston R.J. Heuristic Drift-based Model of the Power Scrape-off Width in Low-gas-puff H-mode Tokamaks. Nuclear Fusion. 2012;52.;1:013009.
8. Loarte A. e a. Progress on the Application of Elm Control Schemes to ITER Scenarios from the Non-active Phase to DT Operation. Nuclear Fusion. 2014;54;3:033007.
9. Budaev V.P. Rezul'taty Ispytaniy Vol'framovyh Misheney Divertora pri Moshchnyh Plazmenno-teplovyh Nagruzkah, Ozhidaemyh v ITER i Tokamakah Reaktornogo Masshtaba (Obzor). Voprosy Atomnoy Nauki i Tekhniki. Seriya «Termoyadernyy Sintez». 2015;38;4:5—33. (in Russian).
10. Budaev V.P., Himchenko L.N. Fraktal'naya Nano- i Mikrostruktura Osazhdennyh Plenok v Termoyadernyh Ustanovkah. Voprosy Atomnoy Nauki i Tekhniki. Seriya «Termoyadernyy Sintez». 2008;3:34—61. (in Russian).
11. Brezinsek S. Plasma-surface Interaction in the Be/W Environment: Conclusions Drawn from the JET-ILW for ITER. J. Nuclear Materials. 2015;463:11—21.
12. Balden M. е. a. Blistering and Re-deposition on Tungsten Exposed to ASDEX Upgrade Divertor Plasma. J. Nuclear Materials. 2013;438:220—223.
13. Labombard B. e. a. Divertor Heat Flux Footprints in EDA H-mode Discharges on Alcator C-mod. J. Nuclear Materials. 2011;415:349—352.
14. Budaev V.P. e. a. Tungsten Recrystallization and Cracking under ITER-Relevant Heat Loads. J. Nuclear Materials. 2015;463:237—240. (in Russian).
15. Budaev V.P., Himchenko L.N. O Fraktal'noy Strukture Osazhdennyh Plenok v Tokamake. ZHETF. 2007;131;4:711—728. (in Russian).
16. Budaev V.P., Khimchenko L.N. Fractal Growth of Deposited Films in Tokamaks. Physica A. 2007;382;2: 359—377.
17. Budaev V.P. Stochastic Clustering of the Surface at the Interaction of a Plasma with Materials. JETP Letters. 2017;105;5:307—313.
18. Budaev V.P. Stochastic Clustering of Material Surface under High-heat Plasma Load. Phys. Letters A. 2017;381;43:3706—3713.
19. Martynenko Yu.V., Budaev V.P., Grashin S.A., Shestakov Е.A. Eroziya Vol'frama v Tokamake pri Sryve Toka. Kratkie Soobshcheniya po Fizike. 2017;44;6: 45—52. (in Russian).
20. Likonen J. e. a. Structural Studies of Deposited Layers on Jet MKII-SRP Inner Divertor Tiles. J. Nuclear Materials. 2007;363—365:190—195.
21. Martynenko Yu.V. Dvizhenie Rasplavlennogo Sloya Metalla i Kapel'naya Eroziya pri Vozdeystvii Plazmennyh Potokov, Harakternyh dlya Perekhodnyh Rezhimov ITER. Voprosy Atomnoy Nauki i Tekhniki. Seriya «Termoyadernyy Sintez». 2014;37;2:53—59. (in Russian).
22. Barabasi A.L., Stanley H.E. Fractal Concepts in Surface Growth. Cambridge: Cambridge Univ. Press, 1995.
23. Barengolts S., Mesyats G., Tsventoukh M. The Ecton Mechanism of Unipolar Arcing in Magnetic Confinement Fusion Devices. Nucl. Fusion. 2010;50;12: 125004.
24. Matějíček J. e. a. ELM-induced arcing on tungsten fuzz in the COMPASS divertor region. J. Nuclear Materials. 2017;492:204—212.
25. Budaev V.P. Innovative Potential of Plasma Technology. J. Physics. Conf. Series. 2017; 891;1: 012301.
26. Khimchenko L. e. a.. Proc. 27th IEEE Symp. Fusion Eng. Shanghai, 2017:153.
27. Takamura S. Initial Stage of Fiber-form Nanostructure Growth on Refractory Metal Surfaces with Helium Plasma Irradiation. Plasma and Fusion Research. 2014;9:1302007.
28. Takamura S. Power Transmission Factor Through the Sheath in Deuterium Plasmas for Virgin as Well as Nanostructured Tungsten. J. Nuclear Materials. 2015;463 325—328.
29. Budaev V.P. i dr. Plazmennaya Ustanovka NIU «MEI» dlya Ispytaniy Tugoplavkih Metallov i Sozdaniya Vysokoporistyh Materialov Novogo Pokoleniya. Voprosy Atomnoy Nauki i Tekhniki. Ceriya «Termoyadernyy Sintez». 2017;40;3:23—36. (in Russian).
30. Stangeby P.C. The Plasma Boundary of Magnetic Fusion Devices. Bristol: Institute of Physics, 2000.
31. Porter G.D. The Role of Radial Particle Flow on Power Balance in DIII-D. Phys. Plasmas. 1998;5;12: 4311—4320.
32. Porter G.D. e. a. Analysis of Separatrix Plasma Parameters Using Local And Multi-machine Databases. J. Nuclear Materials. 1999;266—269:917—921.
33. Budaev V.P. e. a. Power Laws in a Problem of Plasma-surface Interaction. Proc. 33rd EPS Conf. Plasma Phys. Rome, 2006;30I:4.108.
34. Budaev V.P. Primenenie Novyh Materialov so Stohasticheskoy Nano- i Mikrostrukturoy Poverhnosti: Upravlenie Turbulentnymi Potokami v Plazme i Aerodinamike. Vzaimodeystvie Plazmy s Poverhnost'yu: Sb. Nauch. Trudov. XXI Konf. M.: NIYAU «MIFI», 2018: 126—129. (in Russian).
--
For citation: Budaev V.P. The Plasma Heat Load in the Diverter of a Tokamak Nuclear Fusion Reactor. Bulletin of MPEI. 2019;4: 22—33. (in Russian). DOI: 10.24160/1993-6982-2019-4-22-33.

