Mechanisms and Main Causes of Damages Inflicted to Fuel Rods and Fuel Assemblies at Nuclear Power Plants Equipped with Pressurized Water Reactors
DOI:
https://doi.org/10.24160/1993-6982-2019-4-34-49Keywords:
fuel cycle, burnup, fretting wear, acoustics, vibration, safety improvementAbstract
This article is the first part of the review of publications on the problem of increasing the service life and improving the reliability of fuel assemblies (FA) and fuel rods (FR). In the next issues of the journal, Part 2 "Dynamic interactions between the coolant flow and FAs" and Part 3 "Prediction of vibroacoustic resonances in the reactor cores of VVER-based nuclear power plants" of this review will be published. This review part presents the results from investigations into the causes and mechanisms of FR failures, in which radioactive materials (gaseous fission products and volatile elements, in particular, krypton, xenon, iodine, and cesium) escape from the fuel pellet into the reactor primary coolant circuit. It is shown that the nuclear fuel depressurization level is influenced by all stages of the product life cycle, including design, manufacture, and operation of FAs. In particular, during operation, FA vibrations have an effect on the nuclear fuel depressurization level.
As is well-known, an FA is a hydroelastic oscillatory system consisting of two interacting subsystems: a mechanical one and a hydrodynamic one. The FA vibration is due to the dynamic processes occurring in these subsystems. It is noted that the hydrodynamic subsystem has been studied to a rather insufficient extent, which is due to complexity of describing the processes through which the random hydrodynamic loads applied to the streamlined surfaces are produced, as well as the influence of flow thermal-hydraulic and acoustic characteristics on the occurrence of self-excited oscillations. Based on the defective FA operation data, the service life of leaky fuel rods and their linear heat generation rates are estimated. The evolutions of fuel operation conditions and fuel design changes are described. The available recommendations on optimizing FA designs developed taking into account the experience gained from operation of the reactors and the results of the accomplished fretting wear investigations are mentioned. It is shown that all who manufacture and operate nuclear fuel take efforts aimed at improving its quality, because it is the key indicator characterizing the vendor of fuel and nuclear power plants in the world market. Achieving longer fuel campaigns and higher burnup values while keeping or even improving the safety level are the most important criteria for nuclear fuel quality. Currently, the project called Nuclear Fuel Zero Failure Level is in the stage of implementation and obtaining the first results of joint activities of all participants.
References
2. Strasser A., Sunderland D. A Review of Recent LWR Fuel Failures // Proc. Fuel Failure in Normal Operation of Water Reactors: Experience, Mechanisms and Management. IAEA-TECDOC-709. Dimitrovgrad, 1993. Pp. 17—25.
3. Dumont A. FRAGEMA Fuel Reliability: from Detection of Fuel Failures to the Feedback on Design and Fabrication // Ibid. Pp. 46—50.
4. Von Jan R. Siemens KWU Experience with LWR Fuel: Failure Evaluation, Mechanisms and Remedies // Ibid. Pp. 50—57.
5. Lundholm L., Grapengiesser B., Schrire D., Hallstadius L. ABB Atom Fuel Failure — an Overview // Ibid. Pp. 57—63.
6. Yang R., Ozer O., Rosenbaum H.S. Current Challenges and Expectations of High Performance Fuel for the Millennium // Proc. 2000 Intern. Topical Meeting on LWR Fuel Performance. Park City, 2000.
7. Klinger W., Petit C., Willse J. Experience and Reliability of Framatome ANP’s PWR and BWR fuel // Proc. Tech. Meeting Fuel Failure in Water Reactors: Causes and Mitigation. Bratislava, 2003. Pp. 21—29.
8. Conde Lopez J.M., Garcia Leiva M. Spanish Experience with LWR Fuel: General Overview // Ibid. Pp. 30—40.
9. Andersson T. Fuel Failure Mitigation at the Ringhals Рlant // Ibid. Pp. 123—133.
10. Yang R. e. a. Fuel R&D to Improve Fuel Reliability // Proc. 2005 Water Reactor Fuel Performance Meeting. Kyoto, 2005. Pp. 8—14.
11. Dubrovin K.P., Fatieva N.L., Smirnov V.P. Data of Leaking Fuel Assemblies in LWRs Operated in the Former USSR // Proc. Fuel Failure in Normal Operation of Water Reactors: Experience, Mechanisms and Management. IAEA-TECDOC-709. Dimitrovgrad, 1993. Pp. 106—112.
12. Clayton I.C. Internal Hydriding in Irradiated Defected Zircaloy Fuel Rods. Review Rep. Vienna: Intern. Atomic Energy Agency, 1987.
13. Pickman D.O. Internal Cladding Corrosion Effects // J. Nucl. Eng. Design. 1975. V. 33. Iss. 2. Pp. 141—154.
14. Перепелкин С.О. и др. Результаты послереакторных исследований негерметичных ТВЭЛов ВВЭР // Реакторное материаловедение: Тезисы докл. VIII Российской конф. Димитровград: ФГУП «ГНЦ РФ НИИАР», 2007. С. 16—19.
15. Перепелкин С.О. и др. Результаты послереакторных исследований негерметичных ТВЭЛов ВВЭР // Безопасность, эффективность и экономика атомной энергетики: Тезисы докл. VI Междунар. науч.- техн. конф. М.: ОАО «Концерн Росэнергоатом», 2008.
16. Markov D.V. e. a. Results of Post Irradiation Examinations of WER Leaky Rods // Proc. Top Fuel Conf. Paris, 2009. Pp. 164—172.
17. Перепелкин C.O. и др. Результаты послереакторных исследований негерметичных ТВЭЛов ВВЭР // Сборник трудов. Димитровград: ФГУП «ГНЦ РФ НИИАР», 2007. Вып. 4. С. 12—21.
18. Васянович М. Е. и др. Оценка размерного распределения радиоактивных аэрозолей на исследовательском реакторе // Атомная энергия. 2016. Вып.4. С. 240—242.
19. Wilson H., Miller H., Kunishi H. Westinghouse Fuel Performance Experience // Fuel Failure in Normal Operation of Water Reactors: Experience, Mechanisms and Management. IAEA-TECDOC-709. Dimitrovgrad, 1993. Pp. 133—137.
20. Lundberg S. Experience with Defect Fuel at the Kemkraftwerk Leibstadt: Detection, Inspection, Handling and Management // Ibid. Pp. 156—168.
21. Kennard M., Sunderland D., Harbottle J. A Study of Grid-to Rod Fretting Wear in PWR Fuel Assembly. Stoller Rep, 1995.
22. Kim K. e. a. Fuel Failure Analysis of Kori-2 Cycle 8. Daejeon: Korea Atomic Energy Research Institute, 1993.
23. Donovan K. Fuel Integrity Initiative Overview // Proc. ANS LWR Fuel Performance Conf. San Francisco, 2007.
24. Gueldner R., Burtak F. Contribution of Advanced Fuel Technologies to Improve Nuclear Power Plant Operation // Proc. Uranium Institute 24th Ann. Symp. London, 1999.
25. Lettau H., Spierling H., Urban P. Progress in Fuel Assembly Development: Benefits and Risks // Proc. European Nuclear Soc. Nice, 1998.
26. Baleon J.-P., Burtak F., Peyran J.-C., Urban P. Framatome ANP Fuel: Experience and Development // European Nuclear Soc. Topfuel. Stockholm, 2001.
27. Kim K. e. a. PLUS7 Advanced Fuel Assembly Development Program for KSNPs and APR1400 // Proc. 17th KAIF/KNS Ann. Conf. Seoul, 2002.
28. Kim K., Kim Y., Jang Y., Stucker D. PLUS7 Advanced Fuel Development for the CE 1616 Type Nuclear Power Plants // Proc. 13th Pacific Basin Nucl. Conf. Shenzhen, 2002.
29. Kim K. Korean Nuclear Fuel Program // Proc. 2005 Int. Meeting on Water Reactor Fuel Performance. Kyoto, 2005.
30. Kazimi M. Advanced LWRs: Can we make them worthwhile? MIT-Academic Centers of Excellence (ACE) Workshop. Cambridge, 2006.
31. Kim K., Jang Y., Choi J., Lee S. A Study of Flow-induced Grid-to-rod Fretting Wear in PWR Fuel Assemblies // Proc. ASME PVP. San Diego, 2004.
32. Jang Y., Kim K., Kim J. An Experimental Study on the PLUS7 Fuel Assembly Vibration // Proc. Korean Nuclear Soc. Yongpyung, 2002.
33. Jang Y.K., Lu R.Y. FACTS Fuel Assembly Vibration Test Rep. Korea Nuclear Fuel and Westinghouse, 2001.
34. Conner M.E. VISTA High Frequency Vibration Test Rep. Korea Nuclear Fuel and Westinghouse, 2001.
35. Kim Y., Jang Y., Kim K., Kwon J. Advanced Nuclear Fuel, PLUS7, Grid High Frequency Vibration // Proc. Korean Nuclear Soc. Spring Meeting, Kwangju, 2002.
36. Lu R.Y. Long-term Wear Test Rep. Korea Nuclear Fuel and Westinghouse, 2001.
37. Kim K., Suh J. Impact of Nuclear Fuel Assembly Design on Grid-to-Rod Fretting Wear // J. Nuclear Sci. Techn. 2009. V. 46. No. 2. Pp. 149—157.
38. Review of Fuel Failures in Water Cooled Reactors. Nuclear Energy Series No. NF-T-2.1. IAEA: Vienna, 2010.
39. Garzarolli F., Von Jan R., Stehle H. The Main Causes of Fuel Element Failure in Water-cooled Power Reactors // At. Energy Rev. 1979. V. 17. No. 1. Pp. 31—128.
40. El-Adham K. Fuel Failure Mechanisms in Operating US Plants from 1981 to 1986 // J. Nucl. Safety. 1988. V. 152. No. 2—3. Pp. 344—355.
41. Outlook On Advanced Reactors // Nucleonics Week. 1989. Pp. 1—11.
42. Nuclear Power Experience. V. BWR-2. I. Fuel, 1990. Pр. 24—25.
43. Jonsson A., Sundstrom U., Hallstradius L. Inreactor Mechanical Performance of BWR Fuel Channels // Proc. Int. Top. Mtg LWR Fuel Performance. Avignon, 1991. V. 1. No. 184. Pp. 1—6.
44. Chapot J., Freire J. Tracing Fuel Failures at Angra 1 // J. Nucl. Eng. Int. 1994. No. 32. Pp. 17—21.
45. Chapot J.L.C., Suano R., de Couto N. Fuel Failures at ANGRA 1: Cause and mitigation. Vienna: IAEA, 2003.
46. Provost J.L., Debes M. EDF PWR Fuel Operating Experience and High Burnup Performances. Brussels: Top Fuel, 2006.
47. Nuclear Power Experience. Washington: Hagler Bailly, Inc., 1994. V. PWR-2.I. No. 79.
48. Nuclear Fuel. N.-Y.: McGraw-Hill, 1993. V. 5. No. 3.
49. Nuclear Fuel. N.-Y.: McGraw-Hill, 1994. V. 5. No. 3.
50. Wilson H.W. e. a. Westinghouse Fuel Performance in Today’s Aggressive Plant Operating Environment // Int. Topical Mtg on Light Water Reactor Fuel Performance. Portland, ANS, Le Grange, 1997.
51. Nuclear Power Experience. Washington: Hagler Bailly, Inc., 1993. V. PWR-2. No. 75.
52. Baillon N. Grid to Rod Wear in EDF PWR — From Operating Problems to New Design Qualification Method. Vienna: IAEA, 2005.
53. Woods K.N., Klinger W. Siemens Fuel Performance Overview // Proc. Int. Topical Mtg on LWR Fuel Performance. Portland, 1997.
54. Billerey A. Evolution of the Fuel Rod Support Under Irradiation and it Impacts on the Mechanical Behavior of the Fuel Assemblies. Vienna: IAEA, 2005.
55. Klinger W., Petit C., Willse J. Experience and Reliability of FRAMATOME ANP’S PWR and BWR fuel. Vienna: IAEA, 2003.
56. Blanc C., Bournay P., Dangouleme D. FRAGEMA fuel reliability // Proc. Int. Top. Mtg on LWR Fuel Performance. 1991. V. 1. Pp. 353—360.
57. Knott R.P., Keterson R.L., Hallstadius L.G., Young M.Y. Advanced PWR Fuel Designs for High Duty Operation // Int. Conf. Top Fuel. Würzburg, 2003.
58. Scott D. e. a. Post-irradiation Examination of the Lead Westinghouse Robust Fuel Assemblies After Three Cycles of Operation in the Wolf Creek Generating Station // Int. Conf. Top Fuel. Würzburg, 2003.
59. Vallory J. Methodology of PWR Fuel Rod Vibration and Evaluation in HERMES Facilities. Vienna: IAEA, 2005.
60. Gottuso D., Canat J.N., Mollard P. A Family of Upgraded Fuel Assemblies for PWR // Int. Conf. Top Fuel. Salamanca, 2006.
61. Nakajima I., Teshima H., Yamada M. Improvement and Innovation of Mitsubishi PWR Fuel // Int. Conf., Top Fuel. Kyoto, 2005.
62. Kennard M.W. Nuclear Fuel Performance, Trends, Remedies and Challenges // Int. Conf. Top Fuel. Salamanca, 2006.
63. Strasser A., Gingold J. Evaluation of Debris Failures and Preventive Methods // Proc. Fuel Failure in Normal Operation of Water Reactors: Experience, Mechanisms and Management. IAEA-TECDOC-709. Dimitrovgrad, 1993.
64. Carter J., Manzer A.M. Overview of Defect Mechanisms in CANDU Fuel // Proc. Fuel Failure in Normal Operation of Water Reactors: Experience, Mechanisms and Management. IAEA-TECDOC-709. Dimitrovgrad, 1992. Pp. 121—127.
65. Paııdousis M.P. A Review of Flow-induced Vibrations in Reactors and Reactor Components // Nuclear Eng. and Design. 1982. V. 74. Pp. 31—60.
66. Pettigrew M.J., Carlucci L.N., Taylor C.E., Fisher N.J. Flow-induced Vibration and Related Technologies in Nuclear Technologies // Nuclear Eng. and Design. 1991. V. 131. Pp. 81—100.
67. Ikeno T., Kajishima T. Decay of Swirling Turbulent Flow in Rod-bundle // J. Fluid Sci. and Techn. 2006. V. 1(1). Pp. 36—47.
68. Benhamadouche S., Moussou P., Maitre C.L. CFD Estimation of the Flow-Induced Vibrations of a Fuel Rod Downstream of a Mixing Grid // Proc. Pressure Vessels and Piping Conf. Prague, 2009.
69. Kim K.-T. The Study on Grid-to-rod Wear Models for PWR Fuel // Nuclear Eng. and Design. 2009. V. 239. Pp. 2820—2824.
70. Kim K.-T. A Study on the Grid-to-rod Wear-induced Fuel Failure Observed in the 16×16 KOFA Fuel // Nuclear Engineering and Design. 2010. V. 240. Pp. 756—762.
71. Kim K.-T. The Effect of Fuel Rod Supporting Conditions on Fuel Rod Vibration Characteristics and Grid- to-rod Wear // Nuclear Eng. and Design. 2010. V. 240. Pp. 1886—1391.
72. Conner M. E., Baglietto E., Elmahdi A.M. CFD Methodology and Validation for Single-phase Flow in PWR Fuel Assemblies // Ibid. Pp. 2088—2095.
73. Yan J., Yuan K., Tatli E., Karoutas Z. A new Method to Predict Grid-to-rod in a PWR Fuel Assembly Inlet Region // Nuclear Eng. and Design. 2011. V. 241. Pp. 2974—2982.
74. Bhattachary A., Yu S.D., Kawall G. Numerical Simulation of Turbulent Flow Through a 37 Element CANDU Fuel Bundle // Annals Nuclear Energy. 2012. V. 40 (1). Pp. 87—105.
75. Delafontain S., Ricciardi G. Fluctuating Pressure Calculation Induced by Axial Flow Through Mixing Grid // Nuclear Eng. and Design. 2012. V. 242. Pp. 233—246.
76. Lui Z. G., Liu Y., Lu J. Numerical Simulation of the Fluid-structure Interaction for Two Simple Fuel Assemblies // Nuclear Eng. and Design. 2013. V. 243. Pp. 1—12.
77. Mohany A., Hassan M. Modeling of Fuel Bundle Vibration and the Associated Wear in a CANDU Fuel Channel // Ibid. Pp. 214—222.
78. Патрашев А.Н. Турбулентные течения в потоках жидкости с крупными локальными вихреобразованиями. М.: Наука, 1980.
79. Todreas N.E., Kazimi M.S. Nuclear Systems. Ch. 2. Elements of Thermal Hydraulic Design. Massachusetts: Taylor &Francis, 2001.
80. Федотовский B.C., Верещагина Т.Н., Беспрозваных В.А. Гидродинамически связанные колебания стержневых систем // Гидродинамика и безопасность АЭС: Труды отраслевой конф. Обнинск, 1999. С. 297—299.
81. Федотовский B.C., Верещагина Т.Н. О собственных частотах и формах гидродинамически связанных колебаний пучков стержней TBC реакторов типа ВВЭР // Обеспечение безопасности АЭС с ВВЭР: Труды II Всеросс. конф. Подольск, 2001. Т. 5. С. 9.
82. Федорович Е.Д. Вибрации элементов оборудования ядерных энергетических установок. М.: Энергоатомиздат, 1989.
83. Перевезенцев В.В., Солонин В.И., Сорокин Ф.Д Нестационарные гидродинамические нагрузки и вибрации пучка ТВЭЛов в ТВС ВВЭР-440 // Известия вузов. Серия «Ядерная энергетика». 2008. № 4. С. 23—29.
84. Солонин В.И., Перевезенцев В.В. Влияние гидродинамических нагрузок на вибрации пучков ТВЭЛов тепловыделяющих сборок реакторов типа ВВЭР // Проблемы машиностроения и надежности машин. 2009. № 4. С. 92—97.
85. Перевезенцев В.В. Возбуждение колебаний пучка ТВЭЛов реакторов ВВЭР турбулентным потоком теплоносителя // Вестник МГТУ им. Н.Э. Баумана. Серия «Машиностроение». 2009. № 4. С. 78—88.
86. Долгов А.Б., Черников О.Г. Стратегия движения к нулевому отказу ядерного топлива // Безопасность, экономика и эффективность атомной отрасли: Материалы конф. М.: Росатом, 2016.
87. Шульга И. Тепловыделяющие разборки // Атомный эксперт. 2018. № 3 [Электрон. ресурс] http:// atomicexpert.com/page3174296.html (дата обращения 25.12.2018).
--
Для цитирования: Проскуряков К.Н., Аникеев А.В. Механизмы и главные причины повреждений тепловыделяющих элементов и сборок атомных электрических станций с реакторами с водой под давлением // Вестник МЭИ. 2019. № 4. С. 34—49. DOI: 10.24160/1993-6982-2019-4-34-49.
#
1. RB-057-10. Polozhenie o Proektirovanii i Izgotovlenii Teplovydelyayushchih Elementov i Teplovydelyayushchih Sborok s Uran-plutonievym (Moks) Toplivom. Yadernaya i Radiatsionnaya Bezopasnost'. 2010;4 (58): 13—33. (in Russian).
2. Strasser A., Sunderland D. A Review of Recent LWR Fuel Failures. Proc. Fuel Failure in Normal Operation of Water Reactors: Experience, Mechanisms and Management. IAEA-TECDOC-709. Dimitrovgrad, 1993:17—25.
3. Dumont A. FRAGEMA Fuel Reliability: from Detection of Fuel Failures to the Feedback on Design and Fabrication. Ibid:46—50.
4. Von Jan R. Siemens KWU Experience with LWR Fuel: Failure Evaluation, Mechanisms and Remedies. Ibid:50—57.
5. Lundholm L., Grapengiesser B., Schrire D., Hallstadius L. ABB Atom Fuel Failure — an Overview. Ibid:57—63.
6. Yang R., Ozer O., Rosenbaum H.S. Current Challenges and Expectations of High Performance Fuel for the Millennium. Proc. 2000 Intern. Topical Meeting on LWR Fuel Performance. Park City, 2000.
7. Klinger W., Petit C., Willse J. Experience and Reliability of Framatome ANP’s PWR and BWR fuel. Proc. Tech. Meeting Fuel Failure in Water Reactors: Causes and Mitigation. Bratislava, 2003:21—29.
8. Conde Lopez J.M., Garcia Leiva M. Spanish Experience with LWR Fuel: General Overview. Ibid: 30—40.
9. Andersson T. Fuel Failure Mitigation at the Ringhals Рlant. Ibid:123—133.
10. Yang R. e. a. Fuel R&D to Improve Fuel Reliability. Proc. 2005 Water Reactor Fuel Performance Meeting. Kyoto, 2005:8—14.
11. Dubrovin K.P., Fatieva N.L., Smirnov V.P. Data of Leaking Fuel Assemblies in LWRs Operated in the Former USSR. Proc. Fuel Failure in Normal Operation of Water Reactors: Experience, Mechanisms and Management. IAEA-TECDOC-709. Dimitrovgrad, 1993:106—112.
12. Clayton I.C. Internal Hydriding in Irradiated Defected Zircaloy Fuel Rods. Review Rep. Vienna: Intern. Atomic Energy Agency, 1987.
13. Pickman D.O. Internal Cladding Corrosion Effects. J. Nucl. Eng. Design. 1975;33;2:141—154.
14. Perepelkin S.O. i dr. Rezul'taty Poslereaktornyh Issledovaniy Negermetichnyh TVELov VVER. Reaktornoe Materialovedenie: Tezisy Dokl. VIII Rossiyskoy Konf. Dimitrovgrad: FGUP «GNTS RF NIIAR», 2007:16—19. (in Russian).
15. Perepelkin S.O. i dr. Rezul'taty Poslereaktornyh Issledovaniy Negermetichnyh TVELov VVER. Bezopasnost', Effektivnost' i Ekonomika Atomnoy Energetiki: Tezisy Dokl. VI Mezhdunar. Nauch.-tekhn. Konf. M.: OAO «Kontsern Rosenergoatom», 2008. (in Russian).
16. Markov D.V. e. a. Results of Post Irradiation Examinations of WER Leaky Rods. Proc. Top Fuel Conf. Paris, 2009:164—172.
17. Perepelkin C.O. i dr. Rezul'taty Poslereaktornyh Issledovaniy Negermetichnyh TVELov VVER. Sbornik trudov. Dimitrovgrad: FGUP «GNTS RF NIIAR», 2007;4:12—21. (in Russian).
18. Vasyanovich M. Е. i dr. Otsenka Razmernogo Raspredeleniya Radioaktivnyh Aerozoley Na Issledovatel'skom Reaktore. Atomnaya Energiya. 2016;4:240—242. (in Russian).
19. Wilson H., Miller H., Kunishi H. Westinghouse Fuel Performance Experience. Fuel Failure in Normal Operation of Water Reactors: Experience, Mechanisms and Management. IAEA-TECDOC-709. Dimitrovgrad, 1993:133—137.
20. Lundberg S. Experience with Defect Fuel at the Kemkraftwerk Leibstadt: Detection, Inspection, Handling and Management. Ibid:156—168.
21. Kennard M., Sunderland D., Harbottle J. A Study of Grid-to Rod Fretting Wear in PWR Fuel Assembly. Stoller Rep, 1995.
22. Kim K. e. a. Fuel Failure Analysis of Kori-2 Cycle 8. Daejeon: Korea Atomic Energy Research Institute, 1993.
23. Donovan K. Fuel Integrity Initiative Overview. Proc. ANS LWR Fuel Performance Conf. San Francisco, 2007.
24. Gueldner R., Burtak F. Contribution of Advanced Fuel Technologies to Improve Nuclear Power Plant Operation. Proc. Uranium Institute 24th Ann. Symp. London, 1999.
25. Lettau H., Spierling H., Urban P. Progress in Fuel Assembly Development: Benefits and Risks. Proc. European Nuclear Soc. Nice, 1998.
26. Baleon J.-P., Burtak F., Peyran J.-C., Urban P. Framatome ANP Fuel: Experience and Development. European Nuclear Soc. Topfuel. Stockholm, 2001.
27. Kim K. e. a. PLUS7 Advanced Fuel Assembly Development Program for KSNPs and APR1400. Proc. 17th KAIF/KNS Ann. Conf. Seoul, 2002.
28. Kim K., Kim Y., Jang Y., Stucker D. PLUS7 Advanced Fuel Development for the CE 1616 Type Nuclear Power Plants. Proc. 13th Pacific Basin Nucl. Conf. Shenzhen, 2002.
29. Kim K. Korean Nuclear Fuel Program. Proc. 2005 Int. Meeting on Water Reactor Fuel Performance. Kyoto, 2005.
30. Kazimi M. Advanced LWRs: Can we make them worthwhile? MIT-Academic Centers of Excellence (ACE) Workshop. Cambridge, 2006
31. Kim K., Jang Y., Choi J., Lee S. A Study of Flow-induced Grid-to-rod Fretting Wear in PWR Fuel Assemblies.Proc. ASME PVP. San Diego, 2004.
32. Jang Y., Kim K., Kim J. An Experimental Study on the PLUS7 Fuel Assembly Vibration.Proc. Korean Nuclear Soc. Yongpyung, 2002.
33. Jang Y.K., Lu R.Y. FACTS Fuel Assembly Vibration Test Rep. Korea Nuclear Fuel and Westinghouse, 2001.
34. Conner M.E. VISTA High Frequency Vibration Test Rep. Korea Nuclear Fuel and Westinghouse, 2001.
35. Kim Y., Jang Y., Kim K., Kwon J. Advanced Nuclear Fuel, PLUS7, Grid High Frequency Vibration. Proc. Korean Nuclear Soc. Spring Meeting, Kwangju, 2002.
36. Lu R.Y. Long-term Wear Test Rep. Korea Nuclear Fuel and Westinghouse, 2001.
37. Kim K., Suh J. Impact of Nuclear Fuel Assembly Design on Grid-to-Rod Fretting Wear.J. Nuclear Sci. Techn. 2009;46;2:149—157.
38. Review of Fuel Failures in Water Cooled Reactors. Nuclear Energy Series No. NF-T-2.1. IAEA: Vienna, 2010.
39. Garzarolli F., Von Jan R., Stehle H. The Main Causes of Fuel Element Failure in Water-cooled Power Reactors.At. Energy Rev. 1979;17;1:31—128.
40. El-Adham K. Fuel Failure Mechanisms in Operating US Plants from 1981 to 1986.J. Nucl. Safety. 1988;152;2—3:344—355.
41. Outlook On Advanced Reactors. Nucleonics Week. 1989:1—11.
42. Nuclear Power Experience. V. BWR-2. I. Fuel, 1990:24—25.
43. Jonsson A., Sundstrom U., Hallstradius L. Inreactor Mechanical Performance of BWR Fuel Channels. Proc. Int. Top. Mtg LWR Fuel Performance. Avignon, 1991;1;184:1—6.
44. Chapot J., Freire J. Tracing Fuel Failures at Angra 1. J. Nucl. Eng. Int. 1994;32:17—21.
45. Chapot J.L.C., Suano R., de Couto N. Fuel Failures at ANGRA 1: Cause and mitigation. Vienna: IAEA, 2003.
46. Provost J.L., Debes M. EDF PWR Fuel Operating Experience and High Burnup Performances. Brussels: Top Fuel, 2006.
47. Nuclear Power Experience. Washington: Hagler Bailly, Inc., 1994. V. PWR-2.I.;79.
48. Nuclear Fuel. N.-Y.: McGraw-Hill, 1993;5;3.
49. Nuclear Fuel. N.-Y.: McGraw-Hill, 1994;5;3.
50. Wilson H.W. e. a. Westinghouse Fuel Performance in Today’s Aggressive Plant Operating Environment. Int. Topical Mtg on Light Water Reactor Fuel Performance. Portland, ANS, Le Grange, 1997.
51. Nuclear Power Experience. Washington: Hagler Bailly, Inc., 1993;PWR-2;75.
52. Baillon N. Grid to Rod Wear in EDF PWR — From Operating Problems to New Design Qualification Method. Vienna: IAEA, 2005.
53. Woods K.N., Klinger W. Siemens Fuel Performance Overview. Proc. Int. Topical Mtg on LWR Fuel Performance. Portland, 1997.
54. Billerey A. Evolution of the Fuel Rod Support Under Irradiation and it Impacts on the Mechanical Behavior of the Fuel Assemblies. Vienna: IAEA, 2005.
55. Klinger W., Petit C., Willse J. Experience and Reliability of FRAMATOME ANP’S PWR and BWR fuel. Vienna: IAEA, 2003.
56. Blanc C., Bournay P., Dangouleme D. FRAGEMA fuel reliability. Proc. Int. Top. Mtg on LWR Fuel Performance. 1991;1:353—360.
57. Knott R.P., Keterson R.L., Hallstadius L.G., Young M.Y. Advanced PWR Fuel Designs for High Duty Operation. Int. Conf. Top Fuel. Würzburg, 2003.
58. Scott D. e. a. Post-irradiation Examination of the Lead Westinghouse Robust Fuel Assemblies After Three Cycles of Operation in the Wolf Creek Generating Station. Int. Conf. Top Fuel. Würzburg, 2003.
59. Vallory J. Methodology of PWR Fuel Rod Vibration and Evaluation in HERMES Facilities. Vienna: IAEA, 2005.
60. Gottuso D., Canat J.N., Mollard P. A Family of Upgraded Fuel Assemblies for PWR. Int. Conf. Top Fuel. Salamanca, 2006.
61. Nakajima I., Teshima H., Yamada M. Improvement and Innovation of Mitsubishi PWR Fuel. Int. Conf., Top Fuel. Kyoto, 2005.
62. Kennard M.W. Nuclear Fuel Performance, Trends, Remedies and Challenges. Int. Conf. Top Fuel. Salamanca, 2006.
63. Strasser A., Gingold J. Evaluation of Debris Failures and Preventive Methods. Proc. Fuel Failure in Normal Operation of Water Reactors: Experience, Mechanisms and Management. IAEA-TECDOC-709. Dimitrovgrad, 1993.
64. Carter J., Manzer A.M. Overview of Defect Mechanisms in CANDU Fuel. Proc. Fuel Failure in Normal Operation of Water Reactors: Experience, Mechanisms and Management. IAEA-TECDOC-709. Dimitrovgrad, 1992:121—127.
65. Paııdousis M.P. A Review of Flow-induced Vibrations in Reactors and Reactor Components. Nuclear Eng. and Design. 1982;74:31—60.
66. Pettigrew M.J., Carlucci L.N., Taylor C.E., Fi- sher N.J. Flow-induced Vibration and Related Technologies in Nuclear Technologies. Nuclear Eng. and Design. 1991;131:81—100.
67. Ikeno T., Kajishima T. Decay of Swirling Turbulent Flow in Rod-bundle. J. Fluid Sci. and Techn. 2006;1(1):36—47.
68. Benhamadouche S., Moussou P., Maitre C.L. CFD Estimation of the Flow-Induced Vibrations of a Fuel Rod Downstream of a Mixing Grid. Proc. Pressure Vessels and Piping Conf. Prague, 2009.
69. Kim K.-T. The Study on Grid-to-rod Wear Models for PWR Fuel. Nuclear Eng. and Design. 2009;239: 2820—2824.
70. Kim K.-T. A Study on the Grid-to-rod Wearinduced Fuel Failure Observed in the 16×16 KOFA Fuel. Nuclear Engineering and Design. 2010;240:756—762.
71. Kim K.-T. The Effect of Fuel Rod Supporting Conditions on Fuel Rod Vibration Characteristics and Grid-to-rod Wear. Nuclear Eng. and Design. 2010;240: 1886—1391.
72. Conner M. E., Baglietto E., Elmahdi A.M. CFD Methodology and Validation for Single-phase Flow in PWR Fuel Assemblies. Ibid:2088—2095.
73. Yan J., Yuan K., Tatli E., Karoutas Z. A new Method to Predict Grid-to-rod in a PWR Fuel Assembly Inlet Region. Nuclear Eng. and Design. 2011;241:2974—2982.
74. Bhattachary A., Yu S.D., Kawall G. Numerical Simulation of Turbulent Flow Through a 37 Element CANDU Fuel Bundle. Annals Nuclear Energy. 2012;40 (1): 87—105.
75. Delafontain S., Ricciardi G. Fluctuating Pressure Calculation Induced by Axial Flow Through Mixing Grid. Nuclear Eng. and Design. 2012;242:233—246.
76. Lui Z. G., Liu Y., Lu J. Numerical Simulation of the Fluid-structure Interaction for Two Simple Fuel Assemblies. Nuclear Eng. and Design. 2013;243:1—12.
77. Mohany A., Hassan M. Modeling of Fuel Bundle Vibration and the Associated Wear in a CANDU Fuel Channel. Ibid:214—222.
78. Patrashev A.N. Turbulentnye Techeniya v Potokah Zhidkosti s Krupnymi Lokal'nymi Vihreobrazovaniyami. M.: Nauka, 1980. (in Russian).
79. Todreas N.E., Kazimi M.S. Nuclear Systems. Ch. 2. Elements of Thermal Hydraulic Design. Massachusetts: Taylor &Francis, 2001.
80. Fedotovskiy B.C., Vereshchagina T.N., Besprozvanyh V.A. Gidrodinamicheski Svyazannye Kolebaniya Sterzhnevyh Sistem. Gidrodinamika i Bezopasnost' AES: Trudy Otraslevoy Konf. Obninsk, 1999:297—299. (in Russian).
81. Fedotovskiy B.C., Vereshchagina T.N. O Sobstvennyh Chastotah i Formah Gidrodinamicheski Svyazannyh Kolebaniy Puchkov Sterzhney TBC Reaktorov Tipa VVER. Obespechenie Bezopasnosti AES s VVER: Trudy II Vseross. Konf. Podol'sk, 2001;5:9. (in Russian).
82. Fedorovich E.D. Vibratsii Elementov Oborudovaniya Yadernyh Energeticheskih Ustanovok. M.: Energoatomizdat, 1989. (in Russian).
83. Perevezentsev V.V., Solonin V.I., Sorokin F.D. Nestatsionarnye Gidrodinamicheskie Nagruzki i Vibratsii Puchka TVELov v TVS VVER-440. Izvestiya Vuzov. Seriya «YAdernaya energetika». 2008;4:23—29. (in Russian).
84. Solonin V.I., Perevezentsev V.V. Vliyanie Gidrodinamicheskih Nagruzok na Vibratsii Puchkov TVELov Teplovydelyayushchih Sborok Reaktorov tipa VVER. Problemy Mashinostroeniya i Nadezhnosti Mashin. 2009;4:92—97. (in Russian).
85. Perevezentsev V.V. Vozbuzhdenie Kolebaniy Puchka TVELov Reaktorov VVER Turbulentnym Potokom Teplonositelya. Vestnik MGTU im. N.E. Baumana. Seriya «Mashinostroenie». 2009;4: 78—88. (in Russian).
86. Dolgov A.B., Chernikov O.G. Strategiya Dvizheniya k Nulevomu Otkazu Yadernogo Topliva. Bezopasnost', Ekonomika i Effektivnost' Atomnoy Otrasli: Materialy Konf. M.: Rosatom, 2016. (in Russian).
87. Shul'ga I. Teplovydelyayushchie Razborki. Atomnyy Ekspert. 2018;3 [Elektron. resurs] http:// atomicexpert.com/page3174296.html (Data Obrashcheniya 25.12.2018). (in Russian).
--
For citation: Proskuryakov K.N., Anikeev A.V. Mechanisms and Main Causes of Damages Inflicted to Fuel Rods and Fuel Assemblies at Nuclear Power Plants Equipped with Pressurized Water Reactors. Bulletin of MPEI. 2019;4:34—49. (in Russian). DOI: 10.24160/1993-6982-2019-4-34-49.

