An Averaged Model Describing the Propagation of Small Perturbations in the Elastic Body – Poroelastic Medium Configuration for a Two-Velocity Continuum

Authors

  • Светлана [Svetlana] Александровна [A.] Гриценко [Gritsenko]
  • Анварбек [Anvarbek] Мукатович [M.] Мейрманов [Meirmanov]

DOI:

https://doi.org/10.24160/1993-6982-2019-4-127-134

Keywords:

composite media, periodic structure, Lame's equations, acoustics equations, poroelasticity, averaging of periodic structures, two-scale convergence

Abstract

The article continues the series of the authors’ papers devoted to averaging of mathematical models describing the isothermal acoustic processes in a heterogeneous medium with two components separated by a common boundary. One of these components is an elastic body, and the other is a poroelastic continuum. Poroelastic medium is understood to mean an elastic body permeated with a system of pores filled with liquid. The exact mathematical model constructed proceeding from the classical laws of continuum mechanics is used as the initial model. The model’s differential equations contain rapidly oscillating coefficients that appear in making transition to dimensionless variables. It is assumed that there are finite or infinite limits of these coefficients as the small parameter “epsilon” tends to zero. The small parameter “epsilon” is taken equal to the ratio of the average pore size to the characteristic size of the region under consideration. It should be noted that the coefficients of differential equations and the geometry of the considered region both depend on these parameters.

Various averaged (limit) models that do not contain rapidly oscillating coefficients have been derived. For the possibility of using the averaging theory and the known averaging results, simplifying geometric assumptions about the periodicity and connectivity of the pore space and elastic skeleton are added. Averaged models are understood to mean such boundary value problems for equations or systems with relatively slowly changing characteristics that the solutions of boundary value problems for the initial models converge (in a sense) to the solution of the corresponding equations for the averaged model when the period ε of the considered periodic structure tends to zero. Depending on the characteristics of the continuum (whether the fluid is viscous, low-viscous, compressible, or incompressible; whether the skeleton is highly deformable, elastic, perfectly rigid, etc.), different limit modes are obtained.

One of cases involving weakly compressible and low viscous liquid and a weakly deformable elastic skeleton in one region and an elastic body in the other region is investigated. The original mathematical model reflects the real physical process in a fairly accurate manner, but is so complex that the standard averaging scheme does not work for it. Therefore, the two-scale convergence method is used as the main tool. On the one hand, it is often impossible to calculate the model’s limit modes even in terms of weak convergence, but it is possible to do so in terms of two-scale convergence. On the other hand, the sequence of solutions is usually bounded but not compact, and in this case the sequence weak limit is not a satisfactory approximation to the solution of the initial mathematical model, and it is more preferable to use a two-scale limit. The results for an individually taken poroelastic region or for a region occupied by an elastic body were presented in the authors’ previous papers. In the case considered, the joint motion of an elastic body and porous elastic medium is studied, and the main problem lies in deriving the conditions at the common boundary of the elastic and poroelastic regions.

Author Biographies

Светлана [Svetlana] Александровна [A.] Гриценко [Gritsenko]

Ph.D. (Phys.-Math.), Assistant Professor of Mathematical Modeling Dept., NRU MPEI, e-mail: sv.a.gritsenko@gmail.com

Анварбек [Anvarbek] Мукатович [M.] Мейрманов [Meirmanov]

Dr.Sci. (Phys.-Math.), Professor of Differential Equations Dept., Belgorod State University, e-mail: anvarbek@list.ru

References

1. Бахвалов Н.С. Осреднение дифференциальных уравнений с частными производными с быстро осциллирующими коэффициентами // Доклады АН СССР. 1975. Т. 221. № 3. С. 516—519.
2. Бахвалов Н.С. Панасенко Г.П. Осреднение процессов в периодических средах. Математические задачи механики композиционных материалов. М.: Наука, 1984.
3. Жиков В.В., Козлов С.М., Олейник О.А. Усреднение дифференциальных операторов. М.: Наука, 1993.
4. Беляев А.Ю. Усреднение в задачах теории фильтрации. М.: Наука, 2004.
5. Shamaev A.S., Shumilova V.V. Homogenization of Acoustic Equations for a Partially Perforated Elastic Material with Slightly Viscous Fluid // Журнал Сибирского федерального ун-та. Серия «Математика и физика. 2015. № 8 (3). С. 356—370.
6. Жиков В.В., Пастухова С.Е. Усреднение монотонных операторов с условиями коэрцитивности и роста переменного порядка // Математические заметки. 2011. Т. 90. № 1. С. 53—69.
7. Zhikov V.V. Homogenization of a Navier–Stokes Type System for Electrorheological Fluid // Complex Variables and Elliptic Equations. 2011. V. 56. No. 7 — 9. Pp. 545—558.
8. Pastukhova S.E. Estimates in Homogenization of Parabolic Equations with Locally Periodic Coefficients // Asymptot. Anal. 2010. V. 66. No. 3 — 4. Pp. 207—228.
9. Krylova A.S., Sandrakov G.V. Homogenization of Spectral Problem on Small-periodic Networks // Журнал математической физики, анализа, геометрии. 2012. V. 8. No. 4. Pp. 336—356.
10. Егер В., Нойс-Раду М., Шапошникова Т.А. Об усреднении уравнения диффузии в перфорированной области с нелинейным условием на поток на границе полостей и масштабами задачи, приводящими к новому нелинейному соотношению между краевыми условиями и эффективным распределением источников-стоков // Труды семинара им. И.Г. Петровского. 2011. Вып. 28. С. 161—181.
11. Nguetseng, G. A General Convergence Result for a Functional Related to the Theory of Homogenization // SIAM J. Math. Anal. 1989. V. 20. Pp. 608—623.
12. Nguetseng G. Asymptotic Analysis for a Stiff Variational Problem Arising in Mechanic. // SIAM J. Math. Anal. 1990. V. 21. Pp .1394—1414.
13. Lukkassen D., Nguetseng G., Wall P. Two-scale Сonvergence // Int. J. Pure and Appl. Math. 2002. V. 2. No. 1. Pp. 35—86.
14. Allaire G. A General Convergence Result for a Functional Related to the Theory of Homogenization // SIAM J. Math. Anal. 1992. V. 23. Pp. 1482—1518.
15. Жиков В.В. Об одном расширении и применении метода двухмасштабной сходимости // Математический сборник. 2000. Т. 191. № 7. С. 31—72.
16. Жиков В.В., Иосифьян Г.А. Введение в теорию двухмасштабной сходимости // Труды семинара им. И.Г. Петровского. 2013. Вып. 29. С. 281—332.
17. Мейрманов А.М. Уравнения акустики в упругих пористых средах // Сибирский журнал индустриальной математики. 2010. Т. 13. № 2. С. 98—110.
18. Meirmanov A.M. Derivation of Equations of Seismic and Acoustic Wave Propagation and Equations of Filtration Via Homogenization of Periodic Structures // J. Math. Sci. 2009. V. 163. No. 2. Pp. 111—172.
19. Мейрманов А.М., Гриценко С.А., Герус А.А. Усредненные модели изотермической акустики в конфигурации «жидкость – пороупругая среда» // Сибирские электронные математические известия. 2016. № 13. С. 49—74.
20. Burridge R., Keller J.B. Poroelasticity Equations Derived from Microstructure // J. Acoust. Soc. Am. 1981. V. 70. No. 4. Pp. 1140—1146.
21. Sanchez-Palencia E. Non-homogeneous Media and Vibration Theory // Lecture Notes in Physics. Berlin: Springer, 1980. V. 129.
22. Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа. М.: Наука, 1967.
23. Мейрманов А.М., Герус А.А., Гриценко С.А. Усредненные модели изотермической акустики в конфигурации «упругое тело – пороупругая среда» // Математическое моделирование. 2016. Т. 28. № 12. С. 3—19.
24. Гриценко С.А., Мейрманов А.М. О модели изотермической акустики для двухкомпонентной среды // Вестник МЭИ. 2017. № 6. С. 146—151.
25. Conca C. On the Application of the Homogenization Theory to a Class of Problems Arising in Fluid Mechanics // Math. Appl. 1985. V. 64. Pp. 31—75.
--
Для цитирования: Гриценко С.А., Мейрманов А.М. Усредненная модель распространения малых возмущений в конфигурации упругое тело – пороупругая среда для двухскоростного континуума // Вестник МЭИ. 2019. № 4. С. 127—134. DOI: 10.24160/1993-6982-2019-4-127-134
#
1. Bakhvalov N.S. Osrednenie Differentsial'nykh Uravneniy s Chastnymi Proizvodnymi s Bystro Ostsilliruyushchimi Koeffitsientami. Doklady AN SSSR. 1975; 221;3:516—519. (in Russian).
2. Bakhvalov N.S. Panasenko G.P. Osrednenie Protsessov v Periodicheskikh Sredakh. Matematicheskie Zadachi Mekhaniki Kompozitsionnykh Materialov. M.: Nauka, 1984. (in Russian).
3. Zhikov V.V., Kozlov S.M., Oleynik O.A. Usrednenie Differentsial'nykh Operatorov. M.: Nauka, 1993. (in Russian).
4. Belyaev A.Yu. Usrednenie v Zadachakh Teorii Fil'tratsii. M.: Nauka, 2004. (in Russian).
5. Shamaev A.S., Shumilova V.V. Homogenization of Acoustic Equations for a Partially Perforated Elastic Material with Slightly Viscous Fluid. Zhurnal Sibirskogo Federal'nogo Un-ta. Seriya «Matematika i Fizika. 2015;8 (3):356—370.
6. Zhikov V.V., Pastukhova S.E. Usrednenie Monotonnykh Operatorov s Usloviyami Koertsitivnosti i Rosta Peremennogo Poryadka. Matematicheskie Zametki. 2011;90;1:53—69. (in Russian).
7. Zhikov V.V. Homogenization of a Navier–Stokes Type System for Electrorheological Fluid. Complex Variables and Elliptic Equations. 2011;56;7 — 9:545—558.
8. Pastukhova S.E. Estimates in Homogenization of Parabolic Equations with Locally Periodic Coefficients. Asymptot. Anal. 2010;66;3 — 4:207—228.
9. Krylova A.S., Sandrakov G.V. Homogenization of Spectral Problem on Small-periodic Networks. Zhurnal Matematicheskoy Fiziki, Analiza, Geometrii. 2012;8;4: 336—356.
10. Eger V., Noys-Radu M., Shaposhnikova T.A. Ob Usrednenii Uravneniya Diffuzii v Perforirovannoy Oblasti s Nelineynym Usloviem na Potok na Granitse Polostey i Masshtabami Zadachi, Privodyashchimi k Novomu Nelineynomu Sootnosheniyu Mezhdu Kraevymi Usloviyami i Effektivnym Raspredeleniem Istochnikov- Stokov. Trudy Seminara im. I.G. Petrovskogo. 2011;28: 161—181. (in Russian).
11. Nguetseng, G. A General Convergence Result for a Functional Related to the Theory of Homogenization. SIAM J. Math. Anal. 1989;20:608—623.
12. Nguetseng G. Asymptotic Analysis for a Stiff Variational Problem Arising in Mechanic.. SIAM J. Math. Anal. 1990; 21:1394—1414.
13. Lukkassen D., Nguetseng G., Wall P. Two- scale Сonvergence. Int. J. Pure and Appl. Math. 2002;2;1: 35—86.
14. Allaire G. A General Convergence Result for a Functional Related to the Theory of Homogenization. SIAM J. Math. Anal. 1992;23:1482—1518.
15. Zhikov V.V. Ob Odnom Rasshirenii i Primenenii Metoda Dvukhmasshtabnoy Skhodimosti. Matematicheskiy Sbornik. 2000;191;7:31—72. (in Russian).
16. Zhikov V.V., Iosif'yan G.A. Vvedenie v Teoriyu Dvukhmasshtabnoy Skhodimosti. Trudy Seminara im. I.G. Petrovskogo. 2013;29:281—332. (in Russian).
17. Meyrmanov A.M. Uravneniya Akustiki v Uprugikh Poristykh Sredakh. Sibirskiy Zhurnal Industrial'noy Matematiki. 2010;13;2:98—110. (in Russian).
18. Meirmanov A.M. Derivation of Equations of Seismic and Acoustic Wave Propagation and Equations of Filtration Via Homogenization of Periodic Structures. J. Math. Sci. 2009;163;2:111—172.
19. Meyrmanov A.M., Gritsenko S.A., Gerus A.A. Usrednennye Modeli Izotermicheskoy Akustiki v Konfiguratsii «Zhidkost' – Porouprugaya Sreda». Sibirskie Elektronnye Matematicheskie Izvestiya. 2016;13:49—74. (in Russian).
20. Burridge R., Keller J.B. Poroelasticity Equations Derived from Microstructure. J. Acoust. Soc. Am. 1981;70; 4:1140—1146.
21. Sanchez-Palencia E. Non-homogeneous Media and Vibration Theory. Lecture Notes in Physics. Berlin: Springer, 1980;129.
22. Ladyzhenskaya O.A., Solonnikov V.A., Ural'tseva N.N. Lineynye i Kvazilineynye Uravneniya Parabolicheskogo Tipa. M.: Nauka, 1967. (in Russian).
23. Meyrmanov A.M., Gerus A.A., Gritsenko S.A. Usrednennye Modeli Izotermicheskoy Akustiki v Konfiguratsii «Uprugoe Telo – Porouprugaya Sreda». Matematicheskoe Modelirovanie. 2016;28;12:3—19. (in Russian).
24. Gritsenko S.A., Meyrmanov A.M. O Modeli Izotermicheskoy Akustiki dlya Dvukhkomponentnoy Sredy. Vestnik MEI. 2017;6:146—151. (in Russian).
25. Conca C. On the Application of the Homogenization Theory to a Class of Problems Arising in Fluid Mechanics. Math. Appl. 1985;64:31—75.
--
For citation: Gritsenko S.A., Meirmanov A.M. An Averaged Model Describing the Propagation of Small Perturbations in the Elas- tic Body – Poroelastic Medium Configuration for a Two-Velocity Continuum. Bulletin of MPEI. 2019;4:127—134. (in Russian). DOI: 10.24160/1993-6982-2019-4-127-134.

Published

2018-07-24

Issue

Section

Mathematical Modeling, Numerical Methods and Program Complexe (05.13.18)