Synthesis of Liquid Temperature Automatic Control System with Improved Dynamic Performance Indicators

Authors

  • Валерий [Valeriy] Вениаминович [V.] Льготчиков [L′gotchikov]
  • Татьяна [Tatyana] Сергеевна [S.] Ларькина [Lar′kina]

DOI:

https://doi.org/10.24160/1993-6982-2019-5-73-80

Keywords:

heat transfer, logarithmic frequency and dynamic characteristics, correction section, transient function, software, microcontroller, root loci

Abstract

An algorithm for synthesizing an automatic liquid temperature control system is proposed. The obtained result can find practical application in agriculture, in processing and preservation of products and in the chemical industry in programmed setting of liquid medium temperature conditions. Dynamic thermal equilibrium is considered in a system consisting of an inductor, a secondary body heated by eddy currents, and a volume of liquid medium. The heat transfer with respect to the environment and the dependence of the inductor and secondary body resistances on temperature are taken into account. The equations describing the heat transfer processes are linearized, and the control system is synthesized subject to the frequency criteria. An algorithm for selecting the parameters of the correcting Butterworth first-order filter is proposed. The synthesis and analysis stages are illustrated by root loci, transient and dynamic characteristics. The problem of taking into account the forcing in the power supply voltage channel in the case of introducing correction devices is considered. The obtained results are supposed to be used in the software of the microcontroller-based automatic control system. The use of the controller will make it possible, in addition to high-quality control of temperature conditions, to optimize the device operation energy efficiency, to identify the parameters of the thermal and electrical models that are not accessible for direct measurement, and to set up the optimal spatial thermal effect on the liquid. In view of a significant inertia of the controlled plant, the above-mentioned set of problems can be solved in the real time mode.

Author Biographies

Валерий [Valeriy] Вениаминович [V.] Льготчиков [L′gotchikov]

Dr.Sci. (Techn.), Professor of Electromechanical Systems Dept., Branch of NRU MPEI in Smolensk, e-mail: vvldrive@yandex.ru

Татьяна [Tatyana] Сергеевна [S.] Ларькина [Lar′kina]

Ph.D.-student of Electromechanical Systems Dept., Branch of NRU MPEI in Smolensk, e-mail: tatyana.larkina.2015@yandex.ru

References

1. Кирилин В.А., Сычев В.В., Шейдулин А.Е. Техническая термодинамика. М.: Издат. дом МЭИ, 2008.
2. Dolgikh I., Korolev A., Zakharov V. Temperature Processes of Induction Heating Simulation // Scientific Enquiry in the Contemporary World: Theoretical Basiсs and Innovative Approach. Techn. Sci. 2014. V. 5. Pp. 68—74.
3. Банов М.Д. Технология и оборудование контактной сварки. М.: Академия, 2009.
4. Ильинский Н.Ф. Основы электропривода. М.: МЭИ, 2003.
5. Горнов А.О. Нагревание и охлаждение электрических двигателей. М.: МЭИ, 1980.
6. Дьяконов В.П. Maple 10/11/12/13/14 в математических расчётах. М.: ДМК-Пресс, 2011.
7. Физическая энциклопедия. Т. 2. Добротность — Магнитооптика. М.: Большая Российская энциклопедия, 1998.
8. Топчеев Ю.И. Атлас для проектирования систем автоматического регулирования. М.: Машиностроение, 1989.
9. Хоровиц П., Хилл У. Искусство схемотехники. М.: Мир, 2003.
10. Анучин А.С. Система управления электроприводов. М.: Издат. дом МЭИ, 2015.
11. Поляков К.Ю. Основы теории цифровых систем управления. СПб.: Изд-во СПбГМТУ, 2006.
---
Для цитирования: Льготчиков В.В., Ларькина Т.С. Синтез системы автоматического регулирования температуры жидкости с улучшенными динамическими показателями // Вестник МЭИ. 2019. № 5. С. 73—80. DOI: 10.24160/1993-6982-2019-5-73-80.
#
1. Kirilin V.A., Sychev V.V., Sheydulin A.E. Tekhnicheskaya Termodinamika. M.: Izdat. dom MEI, 2008. (in Russian).
2. Dolgikh I., Korolev A., Zakharov V. Temperature Processes of Induction Heating Simulation. Scientific Enquiry in the Contemporary World: Theoretical Basiss and Innovative Approach. Techn. Sci. 2014;5:68—74.
3. Banov M.D. Tekhnologiya i Oborudovanie Kontaktnoy Svarki. M.: Akademiya, 2009. (in Russian).
4. Il'inskiy N.F. Osnovy Elektroprivoda. M.: MEI, 2003. (in Russian).
5. Gornov A.O. Nagrevanie i Okhlazhdenie Elektricheskikh Dvigateley. M.: MEI, 1980. (in Russian).
6. D'yakonov V.P. Maple 10/11/12/13/14 v Matematicheskikh Raschetakh. M.: DMK-Press, 2011. (in Russian).
7. Fizicheskaya entsiklopediya. T. 2. Dobrotnost' — Magnitooptika. M.: Bol'shaya Rossiyskaya Entsiklopediya, 1998. (in Russian).
8. Topcheev Yu.I. Atlas dlya Proektirovaniya Sistem Avtomaticheskogo Regulirovaniya. M.: Mashinostroenie, 1989. (in Russian).
9. Khorovits P., Khill U. Iskusstvo Skhemotekhniki. M.: Mir, 2003. (in Russian).
10. Anuchin A.S. Sistemа Upravleniya Elektroprivodov. M.: Izdat. dom MEI, 2015. (in Russian).
11. Polyakov K.Yu. Osnovy Teorii Tsifrovykh Sistem Upravleniya. SPb.: Izd-vo SPbGMTU, 2006.
---
For citation: L′gotchikov V.V., Lar′kina T.S. Synthesis of Liquid Temperature Automatic Control System with Improved Dynamic Performance Indicators. Bulletin of MPEI. 2019;5:73—80. (in Russian). DOI: 10.24160/1993-6982-2019-5-73-80.

Published

2018-11-06

Issue

Section

Electrical Complex and Systems (05.09.03)