Prospective Integrated Power Supply Systems Involving the Use of Combined Cycle Technologies and Nuclear Power Plants Equipped with Small-Capacity Reactors

Authors

  • Василий [Vasiliy] Владимирович [V.] Жуков [Zhukov]
  • Александр [Aleksandr] Витальевич [V.] Овечкин [Ovechkin]

DOI:

https://doi.org/10.24160/1993-6982-2019-6-30-38

Keywords:

integrated power supply systems, nuclear reactors, gas-turbine units, combined cycle power plants, electrical equipment, electrical circuits, short-circuit fault, auxiliaries

Abstract

Nowadays, the use of decentralized electricity and heat generating systems for supplying power to individual enterprises and to distant and isolated regions has become of issue. It should be noted that the demand for decentralized generation of electricity and heat can be met to a significant extent by constructing integrated power supply systems composed of nuclear power plants equipped with small- (up to 300 MW) and medium-capacity (from 300 to 700 MW) reactors, gas-turbine units (GTUs), and combined-cycle power plants (CCPPs).

An algorithm for designing the electrical part of integrated power supply systems containing small-capacity nuclear power plant units (SC NPPs), GTUs, and CCPPs has been developed. The results from elaborating different versions of shaping an integrated power supply system involving the use of combined cycle technology in an SC NPP unit and power supply systems containing electrically linked GTUs, CCPPs, and SC NPPs are presented. The integrated power supply systems comprise a modular liquid metal cooled SVBR-100 reactor with a lead--bismuth coolant (the development of which at the enterprises of the Rosatom State Atomic Energy Corporation is close to completion) with for capacity of 100 MW, power units equipped with 70 MW GTUs, and a 200 MW CCPP.

As an outcome of the above-mentioned designing activities, the parameters and types of the main electrical equipment used in the integrated power supply systems (generators and transformers) have been determined. In addition, the versions of their power output systems and the basic circuits of power unit auxiliary power supply systems have been proposed. The short-circuit fault currents have been calculated, and the types and parameters of modern switching equipment for the power units have been determined. The possibility of constructing prospective integrated power supply systems with the use combined cycle technologies and nuclear power plants equipped with small-capacity reactors has been substantiated.

Author Biographies

Василий [Vasiliy] Владимирович [V.] Жуков [Zhukov]

Dr.Sci. (Techn.), Professor of Electrical Stations Dept., NRU MPEI, e-mail: ZhukovVV@mpei.ru

Александр [Aleksandr] Витальевич [V.] Овечкин [Ovechkin]

Ph.D.-student of Electrical Stations Dept., NRU MPEI, e-mail: egor00_95@mail.ru

References

1. Nuclear Technology Rev. Vienna: International Atomic Energy Agency, 2012.
2. Марцинкевич Б. Малые и средние АЭС // Геоэнергетика. 2017. Т. 1. [Электрон. ресурс] www.Geoenergetics.ru (дата обращения 06.03.2019).
3. Крутельницкий В.Н. Области применения реакторных установок малой мощности // Атомные станции малой мощности: новое направление развития энергетики. М.: Академ-Принт 2015. Т. 2.
4. Зродников А.В., Тошинский Г.И. Модульные реакторы малой мощности для большой атомной энергетики // Атомная стратегия. 2005. № 16.
5. Zhukov V.V., Pugachev R.V., Nyaware B.O. Energy Complexes Consisting of Hydro and Nuclear Power Plants with Low Power Reactors // Proc. Intern. Ural Conf. Green Energy. Chelyabinsk, 2018.
6. Касилов В.Ф., Дудолин А.А., Господченков М.В. Эффективность использования парогазовой технологии в энергоблоке АЭС с ядерным реактором СВБР-100 // Теплоэнерегетика. 2015. № 5. С. 14—20.
7. Новикова З.Ю., Хрусталев В.А. Об эффективности комбинирования ГТУ и АЭС с ВВЭР // Труды Акадeмэнерго. 2012. № 3. С. 66—74.
8. Жуков В.В. Бизнес-планирование в электроэнергетике. М.: Издат. дом МЭИ, 2011
9. Цанев С.В., Белозеров С.Н. К использованию парогазовых схем для паротурбинных установок на насыщенном водяном паре // Известия Вузов и энергетических объединений СНГ. Серия «Энергетика». 1988. № 12. С. 70—74.
10. Darwish M.A., Al Awadhi F.M., Bin Amer A.O. Combining the Nuclear Power Plant Steam Cycle with Gas Turbines // Energy. 2010. V. 35. Pp. 4562—4571.
11. Крючков И.П., Пираторов М.В., Старшинов В.А. Электрическая часть электростанций и подстанций: cправочные и методические материалы для выполнения квалификационных работ. М.: Издат. дом МЭИ, 2015.
12. Жуков В.В. Электрическая часть электростанций с газотурбинными и парогазовыми установками. М.: Издат. дом МЭИ, 2015.
13. Фельдман М.Л., Черновец А.К. Особенности электрической части атомных электростанций. Л.: Энергоатомиздат, 1983.
---
Для цитирования: Жуков В.В., Овечкин А.В. Перспективные энергетические комплексы с парогазовыми технологиями и атомными электростанциями с ядерными реакторами малой мощности // Вестник МЭИ. 2019. № 6. С. 30—38. DOI: 10.24160/1993-6982-2019-6-30-38.
#
1. Nuclear Technology Rev. Vienna: International Atomic Energy Agency, 2012.
2. Martsinkevich B. Malye i Srednie AES. Geoenergetika. 2017;1. [Elektron. Resurs] www.Geoenergetics.ru (Data Obrashcheniya 06.03.2019). (in Russian).
3. Krutel'nitskiy V.N. Oblasti Primeneniya Reaktornykh Ustanovok Maloy Moshchnosti. Atomnye Stantsii Maloy Moshchnosti: Novoe Napravlenie Razvitiya Energetiki. M.: Akadem-Print 2015;2. (in Russian).
4. Zrodnikov A.V., Toshinskiy G.I. Modul'nye Reaktory Maloy Moshchnosti Dlya Bol'shoy Atomnoy Energetiki. Atomnaya Strategiya. 2005;16. (in Russian).
5. Zhukov V.V., Pugachev R.V., Nyaware B.O. Energy Complexes Consisting of Hydro and Nuclear Power Plants with Low Power Reactors. Proc. Intern. Ural Conf. Green Energy. Chelyabinsk, 2018.
6. Kasilov V.F., Dudolin A.A., Gospodchenkov M.V. Effektivnost' Ispol'zovaniya Parogazovoy Tekhnologii v Energobloke AES s Yadernym Reaktorom SVBR-100. Teploeneregetika. 2015;5:14—20. (in Russian).
7. Novikova Z.Yu., Khrustalev V.A. Ob Effektivnosti kombinirovaniya GTU i AES s VVER. Trudy Akademenergo. 2012;3:66—74. (in Russian).
8. Zhukov V.V. Biznes-planirovanie v Elektroenergetike. M.: Izdat. Dom MEI, 2011. (in Russian).
9. Tsanev S.V., Belozerov S.N. K Ispol'zovaniyu Parogazovykh Skhem dlya Paroturbinnykh Ustanovok na Nasyshchennom Vodyanom Pare. Izvestiya Vuzov i Energeticheskikh Obyedineniy SNG. Seriya «Energetika». 1988;12:70—74. (in Russian).
10. Darwish M.A., Al Awadhi F.M., Bin Amer A.O. Combining the Nuclear Power Plant Steam Cycle with Gas Turbines. Energy. 2010;35:4562—4571.
11. Kryuchkov I.P., Piratorov M.V., Starshinov V.A. Elektricheskaya Chast' Elektrostantsiy i Podstantsiy: Cpravochnye i Metodicheskie Materialy dlya Vypolneniya Kvalifikatsionnykh Rabot. M.: Izdat. Dom MEI, 2015. (in Russian).
12. Zhukov V.V. Elektricheskaya Chast' Elektrostantsiy s Gazoturbinnymi i Parogazovymi Ustanovkami. M.: Izdat. dom MEI, 2015. (in Russian).
13. Fel'dman M.L., Chernovets A.K. Osobennosti Elektricheskoy Chasti Atomnykh Elektrostantsiy. L.: Energoatomizdat, 1983. (in Russian).
---
For citation: Zhukov V.V., Ovechkin A.V. Prospective Integrated Power Supply Systems Involving the Use of Combined Cycle Technologies and Nuclear Power Plants Equipped with Small-Capacity Reactors. Bulletin of MPEI. 2019;6:30—38. (in Russian). DOI: 10.24160/1993-6982-2019-6-30-38.

Published

2019-12-02

Issue

Section

Power Stations and Electric Power Systems (05.14.02)