The Plasma Technology for Shaping the Electric Pacemaker Electrode Surfaces Coated with Ruthenium

Authors

  • Юрий [Yuriy] Владимирович [V.] Мартыненко [Martynenko]
  • Вячеслав [Vyacheslav] Петрович [P.] Будаев [Budaev]

DOI:

https://doi.org/10.24160/1993-6982-2019-6-64-70

Keywords:

plasma processing of materials, nanostructure, plasma-to-surface interaction, ruthenium, electric pacemakers

Abstract

The electric pacemaker (EP), a device for electrically stimulating the myocardium, is widely used for treating and rehabilitating patients who have suffered heart attacks and other heart diseases. Stable transfer of energy in impulses from the EP to the heart and the optimal coordination between the EP parameters and the pacemaker electrodes are the most important conditions for the EP operation.

The electrode is electrically connected with the myocardium tissue mainly through capacitive coupling. To stimulate the myocardium, an electrical impulse with duration of 100–300 µs and energy of 1–5 μJ is required; with the stimulation threshold equal to 1 V, the coupling capacitance should be equal to 2–10 µF. When an electric potential is applied to the electrode, a double electric layer (DEL) appears in the blood electrolyte at the electrode surface. The DEL’s capacitive impedance is significantly higher than its ohmic resistance. The DEL is electrically equivalent to two series-connected capacitors, and its capacitance is determined by the capacitances of the DEL’s inner dense part and of its outer diffuse part. To improve the EP efficiency, the DEL capacitance should be increased. To do so, two methods are used: increasing the electrode surface area by extending its surface and increasing the surface adsorption by using special coatings.

The modern pacemaker electrodes have the characteristic size of extended surface inhomogeneity equal to around 1 µm, which is larger than the DEL’s inner dense layer thickness, which is less than 1 nm. Therefore, for pacemaker electrodes, the size of the surface structure elements should be reduced down to 1 nm. Such structures of the "fuzz" type can be obtained by processing materials with plasma. A PLM plasma installation intended for obtaining an extended surface nanostructure on metals, including that of the “fuzz” type, has been constructed at the National Research University Moscow Power Engineering Institute.

Electrodes of metals from the platinum group are the most promising ones; the iridium coating of the electrodes has the lowest capacitive impedance. Ruthenium (Ru) also belongs to the platinum group of elements. In this study, ruthenium, an element which is a chemical analog of iridium but having a number of technological advantages, has for the first time been proposed for coating the electrodes. Ruthenium is the only one of these elements that is naturally present in the human body. In addition, ruthenium is significantly cheaper than iridium.

In the PLM installation, a nanostructured coating of ruthenium is produced on the electrode by sputtering Ru by means of a target in plasma discharge. It is proposed to test a few approaches, including that in which a “fuzz” type structure is produced on a titanium surface. After that, ruthenium can be sprayed onto this structure, or a “fuzz” type structure can be produced already on the deposited ruthenium layer.

Such experiments open the possibility to develop a new technology for making the pacemaker electrodes with improved characteristics.

Author Biographies

Юрий [Yuriy] Владимирович [V.] Мартыненко [Martynenko]

Dr.Sci. (Phys.-Math.), Сhief Researcher of NRC «Kurchatov Institute», e-mail: martyn907@yandex.ru

Вячеслав [Vyacheslav] Петрович [P.] Будаев [Budaev]

Dr.Sci. (Phys.-Math.), Professor of General Physics and Nuclear Fusion Dept., NRU MPEI, Leading Researcher of NRC «Kurchatov Institute», e-mail: budaev@mail.ru

References

1. Шальдах М. Электрокардиотерапия. СПб.: Изд- во Северо-Запад, 1992.
2. Двойной электрический слой. Физический энциклопедический словарь. М.: Советская энциклопедия, 1960.
3. Обрезков О.И. и др. Исследование электрохимических свойств тонкопленочных материалов для покрытий электродов кардиостимуляторов // Медицинская техника. 2018. T. 311. № 5. C. 1—4.
4. Иконникова К.В., Иконникова Л.Ф., Минакова Т.С., Саркисов Ю.С. Теория и практика РН-метрического определения кислотно-основных свойств поверхности твердых тел. Томск: Изд-во Томского политехн. ун-та, 2011.
5. Cardiac Pacing for the Clinician. Springer Sci. and Business Media LLC, 2008.
6. Раевская М.В., Соколовская Е.М. Физикохимия рутения и его сплавов. М.: Изд-во МГУ, 1979.
7. Seddon E.А., Seddon K.R. The Chemistry of Ruthenium. Amsterdam: Elsevier Sci., 1984.
8. Budaev V.P. Stochastic Clustering of Material Surface Under High-heat Plasma Load // Phys. Lett. A. 2017. V. 381. No. 43. Pp. 3706—3713.
9. Будаев В.П. Результаты испытаний вольфрамовых мишеней дивертора при мощных плазменно-тепловых нагрузках, ожидаемых в ИТЭР и токамаках реакторного масштаба (обзор) // Вопросы атомной науки и техники. Cерия «Термоядерный синтез». 2015. Т. 38. № 4. С. 5—33.
10. Мартыненко Ю.В., Нагель М.Ю. Модель образования «пуха» на поверхности вольфрама // Физика плазмы. 2012. T. 38. № 12. C. 1082—1086.
11. Будаев В.П. и др. Плазменная установка НИУ «МЭИ» для испытаний тугоплавких металлов и создания высокопористых материалов нового поколения // Вопросы атомной науки и техники. Cерия «Термоядерный синтез». 2017. Т. 40. № 3. C. 23—36.
12. Budaev V.P. e. a. Plasma Device for Material Surface Treatment by High-heat Plasma // J. Physics. Conf. Series. 2018. V. 1115. Pp. 032023—032026.
13. Kajita S., Sakaguchi W., Ohno N., Yoshida N., Saeki T. Formation Process of Tungsten Nanostructure by the Exposure to Helium Plasma Under Fusion Relevant Plasma Conditions // Nucl. Fusion. 2009. V. 49. No. 9. P. 095005.
14. Kajita S., Kawaguchi S., Ohno N., Yoshida N. Enhanced Growth of Large-scale Nanostructures with Metallic Ion Precipitation in Helium Plasmas // Sci. Rep. 2018. V. 8(1). P. 56.
15. Kajita S., Kawaguchi S., Ohno N., Yoshida N. Morphologies of CO-depositing We Layer Formed During the Plasma Irradiation // Nucl. Fusion. 2018. V. 58. P. 106002.
---
Для цитирования: Мартыненко Ю.В., Будаев В.П. Плазменная технология формирования поверхности электродов кардиостимуляторов из рутения // Вестник МЭИ. 2019. № 6. С. 64—70. DOI: 10.24160/1993-6982-2019-6-64-70.
#
1. Shal'dakh M. Elektrokardioterapiya. SPb.: Izd-vo Severo-Zapad, 1992. (in Russian).
2. Dvoynoy Elektricheskiy Sloy. Fizicheskiy Entsiklopedicheskiy Slovar'. M.: Sovetskaya Entsiklopediya, 1960. (in Russian).
3. Obrezkov O.I. i dr. Issledovanie Elektrokhimicheskikh Svoystv Tonkoplenochnykh Materialov dlya Pokrytiy Elektrodov Kardiostimulyatorov. Meditsinskaya Tekhnika. 2018;311;5:1—4. (in Russian).
4. Ikonnikova K.V., Ikonnikova L.F., Minakova T.S., Sarkisov Yu.S. Teoriya i Praktika РН-metricheskogo Opredeleniya Kislotno-osnovnykh Svoystv Poverkhnosti Tverdykh Tel. Tomsk: Izd-vo Tomskogo Politekhn. Un-ta, 2011. (in Russian).
5. Cardiac Pacing for the Clinician. Springer Sci. and Business Media LLC, 2008.
6. Raevskaya M.V., Sokolovskaya E.M. Fizikokhimiya Ruteniya i Ego Splavov. M.: Izd-vo MGU, 1979. (in Russian).
7. Seddon E.A., Seddon K.R. The Chemistry of Ruthenium. Amsterdam: Elsevier Sci., 1984.
8. Budaev V.P. Stochastic Clustering of Material Surface Under High-heat Plasma Load. Phys. Lett. A. 2017; 381;43:3706—3713.
9. Budaev V.P. Rezul'taty Ispytaniy Vol'framovykh Misheney Divertora pri Moshchnykh Plazmenno-teplovykh Nagruzkakh, Ozhidaemykh v ITER i Tokamakakh Reaktornogo Masshtaba (Obzor). Voprosy Atomnoy Nauki i Tekhniki. Ceriya «Termoyadernyy Sintez». 2015;38;4: 5—33. (in Russian).
10. Martynenko Yu.V., Nagel' M.Yu. Model' Obrazovaniya «Pukha» na Poverkhnosti Vol'frama. Fizika Plazmy. 2012;38;12:1082—1086. (in Russian).
11. Budaev V.P. i dr. Plazmennaya Ustanovka NIU «MEI» dlya Ispytaniy Tugoplavkikh Metallov i Sozdaniya Vysokoporistykh Materialov Novogo Pokoleniya. Voprosy Atomnoy Nauki i Tekhniki. Ceriya «Termoyadernyy Sintez». 2017;40;3:23—36. (in Russian).
12. Budaev V.P. e. a. Plasma Device for Material Surface Treatment by High-heat Plasma. J. Physics. Conf. Series. 2018;1115:032023—032026.
13. Kajita S., Sakaguchi W., Ohno N., Yoshida N., Saeki T. Formation Process of Tungsten Nanostructure by the Exposure to Helium Plasma Under Fusion Relevant Plasma Conditions. Nucl. Fusion. 2009;49;9:095005.
14. Kajita S., Kawaguchi S., Ohno N., Yoshida N. Enhanced Growth of Large-scale Nanostructures with Metallic Ion Precipitation in Helium Plasmas. Sci. Rep. 2018;8(1):56.
15. Kajita S., Kawaguchi S., Ohno N., Yoshida N. Morphologies of CO-depositing We Layer Formed During the Plasma Irradiation. Nucl. Fusion. 2018;58:106002.
---
For citation: Martynenko Yu.V., Budaev V.P. The Plasma Technology for Shaping the Electric Pacemaker Electrode Surfaces Coated with Ruthenium. Bulletin of MPEI. 2019;6:64—70. (in Russian). DOI: 10.24160/1993-6982-2019-6-64-70.

Published

2019-01-18

Issue

Section

Electrical Materials and Products (05.09.02)