A Synthesis of Carbon Nanotube Arrays with Variable Density
DOI:
https://doi.org/10.24160/1993-6982-2020-1-67-72Keywords:
carbon nanotubes, Raman-scattering spectroscopy, surface-enhanced Raman scattering spectroscopyAbstract
The study is aimed at obtaining a sparse carbon nanotube (CNT) array for using it in experiments on amplifying the surface-enhanced Raman scattering (SERS) signal.
A procedure for synthesizing CNTs on Si/SiO2 and on glass-ceramic (sitall) substrates using the CVD method has been developed. The substrates were covered with a thin Ni layer in a magnetron sputtering unit. The subsequent annealing of the substrates in a high-temperature furnace at a temperature of 800-1000 оС resulted in that the Ni film became decomposed into an array of Ni islands that served as CNT growth catalysts. The CNTs were synthesized in the Planar Tech unit’s automated high-temperature furnace in a quartz glass tube, which was placed in the furnace and streamlined by flow of Ar with admixture СН4, Н2 and NH The synthesis temperature was equal to 900 оС, and the total synthesis process took more than 200 min. Owing to the system’s being fully automated, the synthesis operating parameters could be set up, including the temperature and duration of each stage and composition of gas mixture blown through the quartz tube. The microimages of the CNT arrays grown on different substrates were analyzed, and it has been found from that analysis that the synthesis yielded horizontally oriented multilayer CNTs ranging from 26 to 60 nm in diameter, depending both on the substrate type and condition and the surface annealing conditions. These factors also determine the CNT array density on the substrate. The synthesis conditions under which a sparse CNT array is obtained, which seems to be the most suitable for carrying out experiments on amplifying the SERS signal, have been established. Peculiarities of the Raman signal enhancement as a result of interaction between plasmon oscillations in CNTs and polyatomic molecules in the presence of laser radiation are discussed. It is pointed out that neighboring nanotubes have a screening effect on the radiation, for avoiding which sparse CNT arrays need to be used.
References
2. Елецкий А.В. Эндоэдральные структуры // УФН. 2000. Т. 170. № 2. С. 113—142.
3. Елецкий А.В. Углеродные нанотрубки и их эмиссионные свойства // УФН. 2002. Т. 172. № 4. С. 401—438.
4. Елецкий А.В. Механические свойства углеродных наноструктур // УФН. 2007. Т. 177. № 3. С. 233—274.
5. Елецкий А.В. Транспортные свойства углеродных нанотрубок // УФН. 2009. Т. 179. № 3. С. 225—242.
6. Елецкий А.В. Холодные полевые эмиттеры на основе углеродных нанотрубок // УФН. 2010. Т. 180. № 9. С. 897—930.
7. Елецкий А.В., Книжник А.А., Потапкин Б.В., Kenny J.M. Электрические характеристики полимерных композитов, содержащих углеродные нанотрубки // УФН. 2015. Т. 185. № 3. С. 225—270.
8. Krylov A.A. е. а. Performance Peculiarity of CNT-based thin Film Saturable Absorbers for Er Fiber Laser Mode-locking // J. Optical Soc. America B: Optical Phys. 2016. No. 33 (2). Pp. 134—142.
9. Arutyunyan N.R. е. а. Light Polarizer in Visible and THz Range Based on Single-wall CNTs Embedded Into Poly (Methyl Methacrylate) Film // Laser Phys. Letters. 2016. V. 13. No. 6. Pp. 065901—065905.
10. Blackie E.J., Le Ru E.C., Etchegoin P.G. Single-molecule Surface-enhanced Raman Spectroscopy of Nonresonant Molecules // J. Am. Chem. Soc. 2009. V. 40. No. 131. Pp. 14466—14472.
11. Le Ru E.C., Blackie E., Meyer M., Etchegoin P.G. Surface Enhanced Raman Scattering Enhancement Factors: a Comprehensive Study // J. Phys. Chem. C. 2007. V. 37. No. 111. Pp. 13794—13803.
12. Nie S., Emory S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering // Science. 1997. V. 5303. No. 275. Pp. 1102—1106.
13. Le Ru E.C., Meyer M., Etchegoin P.G. Proof of Single-molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-analyte Technique // J. Phys. Chem. B. 2006. V. 110. No. 4. Pp. 1944—1948.
14. Chen Y.-C., Young R.J., Macpherson J.V, Wilson N.R. Single-walled Carbon Nanotube Networks Decorated with Silver Nanoparticles: a Novel Graded SERS Substrate // J. Phys. Chem. C. 2007. V. 44. No. 111. Pp. 16167—16173.
15. Lee S. е. а. Utilizing 3D SERS Active Volumes in Aligned Carbon Nanotube Scaffold Substrates // Adv. Mater. 2012. No. 24 (38). Pp. 5261—5266.
16. Mueller N.S. е. а. Plasmonic Enhancement of SERS Measured on Molecules in Carbon Nanotubes // Faraday Discuss. 2017. No. 205. Pp. 85—103.
17. Елецкий А.В. и др. Усиление сигнала комбинационного рассеяния углеродными нанотрубками // Доклады РАН. 2018. Т. 483. № 5. С. 502—505.
18. Brouers F. е. а. Theory of Giant Raman Scattering from Semicontinuous Films // Phys. Rev. B. 1997. V. 55. P. 13234.
19. Boyarintsev S.O., Sarychev A.K. Computer Simulation of Surface-enhanced Raman Scattering in Nano-structured Metamaterials // J. Experimental and Theoretical Phys. 2012. V. 113. No. 6. P. 1103.
20. Lagarkov A.N., Sarychev A.K. Electromagnetic Properties of the Composites Containing Elongated Conducting Inclusions // Phys. Rev. B. 1996. V. 53. Pp. 6318—6336.
21. Vergeles S.S., Sarychev A.K., Tartakovsky G. All-dielectric Light Concentrator to Subwavelength Volume // Phys. Rev. B. 2017. V. 95. P. 085401
--
Для цитирования: Бочаров Г.С., Егин М.С., Елецкий А.В., Климова М.А., Нефедкин С.И. Синтез массивов углеродных нанотрубок с варьируемой плотностью // Вестник МЭИ. 2020. № 1. С. 67—72. DOI: 10.24160/1993-6982-2020-1-67-72.
#
1. Eletskiy A.V. Uglerodnye Nanotrubki. UFN. 1997; 167;9:945—972. (in Russian).
2. Eletskiy A.V. Endoedral'nye Struktury. UFN. 2000; 170;2:113—142. (in Russian).
3. Eletskiy A.V. Uglerodnye Nanotrubki i Ikh Emissionnye Svoystva. UFN. 2002;172;4:401—438. (in Russian).
4. Eletskiy A.V. Mekhanicheskie Svoystva Uglerodnykh Nanostruktur. UFN. 2007;177;3:233—274. (in Russian).
5. Eletskiy A.V. Transportnye Svoystva Uglerodnykh Nanotrubok. UFN. 2009;179;3:225—242. (in Russian).
6. Eletskiy A.V. Kholodnye Polevye Emittery na Osnove Uglerodnykh Nanotrubok. UFN. 2010;180;9:897—930. (in Russian).
7. Eletskiy A.V., Knizhnik A.A., Potapkin B.V., Kenny J.M. Elektricheskie Kharakteristiki Polimernykh Kompozitov, Soderzhashchikh Uglerodnye Nanotrubki. UFN. 2015;185;3:225—270. (in Russian).
8. Krylov A.A. е. а. Performance Peculiarity of CNT-based thin Film Saturable Absorbers for Er Fiber Laser Mode-locking. J. Optical Soc. America B: Optical Phys. 2016;33 (2):134—142.
9. Arutyunyan N.R. е. а. Light Polarizer in Visible and THz Range Based on Single-wall CNTs Embedded Into Poly (Methyl Methacrylate) Film. Laser Phys. Letters. 2016;13;6:065901—065905.
10. Blackie E.J., Le Ru E.C., Etchegoin P.G. Single-molecule Surface-enhanced Raman Spectroscopy of Nonresonant Molecules. J. Am. Chem. Soc. 2009;40;131: 14466—14472.
11. Le Ru E.C., Blackie E., Meyer M., Etchegoin P.G. Surface Enhanced Raman Scattering Enhancement Factors: a Comprehensive Study. J. Phys. Chem. C. 2007;37; 111:13794—13803.
12. Nie S., Emory S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science. 1997;5303;275:1102—1106.
13. Le Ru E.C., Meyer M., Etchegoin P.G. Proof of Single-molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-analyte Technique. J. Phys. Chem. B. 2006;110;4:1944—1948.
14. Chen Y.-C., Young R.J., Macpherson J.V, Wilson N.R. Single-walled Carbon Nanotube Networks Decorated with Silver Nanoparticles: a Novel Graded SERS Substrate. J. Phys. Chem. C. 2007;44;111;16167— 16173.
15. Lee S. е. а. Utilizing 3D SERS Active Volumes in Aligned Carbon Nanotube Scaffold Substrates. Adv. Mater. 2012;24 (38):5261—5266.
16. Mueller N.S. е. а. Plasmonic Enhancement of SERS Measured on Molecules in Carbon Nanotubes. Faraday Discuss. 2017;205:85—103.
17. Eletskiy A.V. i dr. Usilenie Signala Kombinatsionnogo Rasseyaniya Uglerodnymi Nanotrubkami. Doklady RAN. 2018;483;5:502—505. (in Russian).
18. Brouers F. е. а. Theory of Giant Raman Scattering from Semicontinuous Films. Phys. Rev. B. 1997;55:13234.
19. Boyarintsev S.O., Sarychev A.K. Computer Simulation of Surface-enhanced Raman Scattering in Nanostructured Metamaterials. J. Experimental and Theoretical Phys. 2012;113;6:1103.
20. Lagarkov A.N., Sarychev A.K. Electromagnetic Properties of the Composites Containing Elongated Conducting Inclusions. Phys. Rev. B. 1996;53:6318—6336.
21. Vergeles S.S., Sarychev A.K., Tartakovsky G. All-dielectric Light Concentrator to Subwavelength Volume. Phys. Rev. B. 2017; 95:085401.
--
For citation: Bocharov G.S., Egin M.S., Yeletsky A.V., Klimova M.A., Nefedkin S.I. A Synthesis of Carbon Nanotube Arrays with Variable Density. Bulletin of MPEI. 2020;1:67—72. (in Russian). DOI: 10.24160/1993-6982-2020-1-67-72

