Integral Representations for the Generalized Cauchy-Riemann Equation with a Supersingular Point in a Half Plane

Authors

  • Абдурауф [Abdurauf] Бабаджанович [B.] Расулов [Rasulov]
  • Ирина [Irina] Николаевна [N.] Дорофеева [Dorofeeva]

DOI:

https://doi.org/10.24160/1993-6982-2020-1-105-108

Keywords:

Cauchy-Riemann operator, Vekua operator, singular point, half-plane

Abstract

In the class of first-order elliptic systems, the generalized Cauchy-Riemann system (GCRS) occupies a special place. If the coefficients at the lowest terms and the right-hand side of the GCRS belong to the space of summable functions with degree p > 2 the representation of the general solution of the equation of this system from the Helder class was obtained by I.N. Vekua.

The problems for GCRS with coefficients having first-order singularities at an isolated singular point were studied in works by L.G. Mikhailov, Z.D. Usmanov, A.P. Soldatov, N.R. Rajabov, A. Tungatarov, R. Saks, and others. The concept of a super-singular singularity was suggested by N.R. Rajabov. Great interest in GCRS is also stemming from its numerous applications. For example, GCRS with a singular point are used in the theory of infinitesimal flexures of positively curved surfaces with flattening points, and GCRS with a singular line reduces to the Ernst version of the Maxwell-Einstein equation. In all of published papers, GCRS with singularities in the lower coefficients was mainly studied in a finite domain.

In this article, an integral representation of the solution in the class of bounded functions has been found for an equation with a Cauchy- Riemann operator with an inner supersingular point in lower coefficients on a half-plane.

Author Biographies

Абдурауф [Abdurauf] Бабаджанович [B.] Расулов [Rasulov]

Dr.Sci.  (Phys.-Math.),  Professor  of  Higher  Mathematics  Dept.,  NRU  MPEI,  e-mail: rasulov_abdu@rambler.ru

Ирина [Irina] Николаевна [N.] Дорофеева [Dorofeeva]

Senior Lecturer of Higher Mathematics Dept., NRU MPEI, e-mail: idoro224@gmail.com

References

1. Векуа И.Н. Обобщенные аналитические функции. М.: Физматгиз, 1959.
2. Михайлов Л.Г. Новые классы особых интегральных уравнений и их применение к дифференциальным уравнениям с сингулярными коэффициентами. Душанбе: ТаджикНИИНТИ, 1963.
3. Расулов А.Б., Солдатов А.П. Краевая задача для обобщенного уравнения Коши–Римана с сингулярными коэффициентами // Дифференциальные уравнения. 2016. Т. 52. № 5. С. 637—650.
4. Abdymanapov S.A., Begehr H., Harutugian G., Tungatarov A. Four Boundary Value Problems for the Cauchy-Riemann Equation in a Quarter Plane // Proc. V Intern. Congress of More Progresses in Analysis. Catania, 2005. Pp. 1137—1147.
5. Усманов З.Д. Обобщенные системы Коши–Римана с сингулярной точкой. Душанбе: Изд-во АН Таджикской ССР, 1993.
6. Akhmed-Zaki D.K., Tungatarov A. About One System of First Order Partial Differential Equations with Singular Lines // Proc. IV Congress of the Turkic World Mathematical Soc. Azerbaijan, 2011. P. 144.
7. Meziani A. Representation of Solutions of a Singular CR Equation in the Plane // Complex Var. and Elliptic Eq. 2008. V. 53. Pp. 1111—1130.
8. Reissig M., Timofeev A. Dirichlet Problems for Generalized Cauchy-Riemann Systems with Singular Coefficients // Complex Variables. 2005. V. 50. № 7 (11). Pp. 653—672.
9. Begehr H, Dao-Qing Dai. On Continuous Solutions of a Generalized Cauchy-Riemann System with More Than One Singularity // J. Differential Equations. 2004. V. 196. Pp. 67—90.
--
Для цитирования: Расулов А.Б., Дорофеева И.Н. Интегральные представления для обобщенного уравнения Коши-Римана со сверхсингулярной точкой на полуплоскости // Вестник МЭИ. 2020. № 1. С. 105—108. DOI: 10.24160/1993-6982-2020-1-105-108.
#
1. Vekua I.N. Obobshchennye Analiticheskie Funktsii. M.: Fizmatgiz, 1959. (in Russian).
2. Mikhaylov L.G. Novye Klassy Osobykh Integral'nykh Uravneniy i Ikh Primenenie k Differentsial'nym Uravneniyam s Singulyarnymi Koeffitsientami. Dushanbe: TadzhikNIINTI, 1963. (in Russian).
3. Rasulov A.B., Soldatov A.P. Kraevaya Zadacha dlya Obobshchennogo Uravneniya Koshi–Rimana s Singulyarnymi Koeffitsientami. Differentsial'nye uravneniya. 2016;52;5:637—650. (in Russian).
4. Abdymanapov S.A., Begehr H., Harutugian G., Tungatarov A. Four Boundary Value Problems for the Cauchy-Riemann Equation in a Quarter Plane. Proc. V Intern. Congress of More Progresses in Analysis. Catania, 2005:1137—1147.
5. Usmanov Z.D. Obobshchennye Sistemy Koshi– Rimana s Singulyarnoy Tochkoy. Dushanbe: Izd-vo AN Tadzhikskoy SSR, 1993. (in Russian).
6. Akhmed-Zaki D.K., Tungatarov A. About One System of First Order Partial Differential Equations with Singular Lines. Proc. IV Congress of the Turkic World Mathematical Soc. Azerbaijan, 2011:144.
7. Meziani A. Representation of Solutions of a Singular CR Equation in the Plane. Complex Var. and Elliptic Eq. 2008;53:1111—1130.
8. Reissig M., Timofeev A. Dirichlet Problems for Generalized Cauchy-Riemann Systems with Singular Coefficients. Complex Variables. 2005;50;7 (11): 653—672.
9. Begehr H, Dao-Qing Dai. On Continuous Solutions of a Generalized Cauchy-Riemann System with More Than One Singularity. J. Differential Equations. 2004;196: 67—90.
--
For citation: Rasulov A.B., Dorofeeva I.N. Integral Representations for the Generalized Cauchy-Riemann Equation with a Supersingular Point in a Half Plane. Bulletin of MPEI. 2020;1:105—108. (in Russian). DOI: 10.24160/1993-6982-2020-1-105-108.

Published

2019-05-21

Issue

Section

Differential Equations, Dynamical Systems and Optimal Control (1.1.2)