Comparison of the Results from Modeling the Power Performance of a Residential Building Using Different Software Tools
DOI:
https://doi.org/10.24160/1993-6982-2020-3-31-39Keywords:
information and power performance modeling of buildings, modeling of computational fluid dynamics, energy consumption, ArchiCAD, Passive House Planning Package PHPP, DesignPH, ECODesigner STAR, TRNSYS, MagiCAD RoomAbstract
The article considers the following software tools for calculating heat losses and energy consumption: Passive House Planning Package (PHPP) and DesignPH, EcoDesigner STAR, TRNSYS, and MagiCAD Room. The calculations were carried out for one particular object — a residential house with an area of 205 m2 built in the Moscow region. The BEM packages used for the analysis are described. Their advantages and disadvantages, as well as specific features of modeling are noted.
The process of interconnection between the building energy model (BEM) and its information model (BIM) is considered. Comparison of the results from modeling the power performance of the object with the same thermophysical properties of its enclosing structures has shown that several BEM-packages should simultaneously be used in designing buildings, because each package is unique in its own way and provides important information, and comparison of the calculation results makes it possible to ascertain that the modeling is correct in nature.
The results from calculation of heat losses by heat transfer obtained in all packages have been found to be approximately the same. The calculated heat inputs from solar radiation estimated in EcoDesigner STAR are higher than those estimated in PHPP. The calculated internal heat releases obtained in all packages are different, because each package uses its own methods for specifying internal heat releases. The main disadvantage of the EcoDesigner STAR and TRNSYS packages is noted, namely, impossibility to specify the recuperator thermal efficiency, which leads to excessively high thermal loads on the ventilation system. The MagiCAD Room package does not take into account heat release and heat input from solar radiation; therefore, it can only be used for calculating heat losses and selecting the space heating devices.
References
2. Крышов С.И., Курилюк И.С. Проблемы экспертной оценки тепловой защиты зданий // Жилищное строительство. 2016. № 7. С. 3—5.
3. BP Statistical Review of World Energy. London: Pureprint Group Limited, 2017.
4. Doe U. Building Energy Software Tools Directory. Washington, 2012.
5. Gao H., Koch C., Wu Y. Building Information Modelling Based Building Energy Modelling: a Review // Appl. Energy. 2019. V. 238. Pp. 320—343.
6. Талапов В.В. Жизненный цикл здания и его связь с внедрением технологии BIM [Электрон. ресурс] https://ardexpert.ru/article/8445 (дата обращения 14.10.2019).
7. Султангузин И.А. и др. Развитие системы энергоснабжения студгородка МЭИ на основе концепции «зелёного» строительства // Сантехника, отопление, кондиционирование. 2018. № 1. С. 106—109.
8. Калякин И.Д. и др. Внедрение энергосберегающих технологий в систему теплоснабжения реконструируемого административного здания // Энергосбережение — теория и практика: Труды IX Междунар. школы-семинара молодых ученых и специалистов. М.: Издат. дом МЭИ, 2018. С. 181—186.
9. Султангузин И.А. и др. Применение BIM, BEM и CFD технологий для проектирования, строительства и эксплуатации энергоэффективного дома // Сантехника, отопление, кондиционирование. 2019. № 3. С. 36—42.
10. Maile T, Fischer M, Bazjanac V. Building Energy Performance Simulation Tools — a Life-cycle and Interoperable Perspective // Center for Integrated Facility Eng. Working Paper. 2007. V. 107. Pp. 1—49.
11. Buonomano A, Montanaro U, Palombo A, Santini S. Dynamic Building Energy Performance Analysis: a New Adaptive Control Strategy for Stringent Thermo Hygrometric Indoor Air Requirements // Appl. Energy. 2016. V. 163. Pp. 361—86.
12. Файст В. Основные положения по проектированию пассивных домов. М.: Конти-Принт, 2015.
13. Feist W., Schnieder J. Energy Efficiency – a Key to Sustainable Housing // European Phys. J. 2009. V. 176. Pp. 141—153.
14. Feist W., Schnieders J., Dorer V., Haas A. Re-inventing Air Heating: Convenient and Comfortable Within the Frame of the Passive House Concept // Energy and Buildings. 2005. V. 37. Pp. 1186—1203.
15. Говорин А.В., Султангузин И.А. Энергоэффективный жилой дом с минимальным потреблением энергии от внешних сетей (Ашукино, Московская область) // Возобновляемая энергетика: будущее рядом: Материалы II Климатического Форума городов России. Москва, 2018. С. 18—21.
16. Sultanguzin I.A., Kalyakin I., Govorin A., Khristenko B., Yavorovsky Yu. Optimization of the Energy Efficient Active House // Proc. 3 INGENIUERTAG. Cottbus: Brandenburg University of Technology (BTU) Cottbus-Senftenberg, 2016. Pp. 8—12.
17. Султангузин И.А. и др. Расчет, строительство и обследование фасада энергоэффективного дома // Строительство и реконструкция. 2017. № 4. С. 110—118.
18. O'Donnell J.T. e. a. Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames Sustainability Base BIM // Rep. Lawrence Berkeley National Laboratory. Berkeley, 2013.
19. ГОСТ 12.1.005—88. Общие санитарно-гигиенические требования к воздуху рабочей зоны (с Изменением № 1).
20. Общий знаменатель. IFC — это намного больше, чем простой формат файла [Электрон. ресурс] https://bimlib.pro/articles/obshchiy-znamenatel-ifc-eto-namnogo-bolshe-chem-prostoy-format-fayla-17/ (дата обращения 11.03.2019).
21. СП 131.13330.2012. Строительная климатология. Актуализированная редакция СНиП 23-01-99 (с Изменениями № 1, 2).
---
Для цитирования: Яворовский Ю.В., Султангузин И.А., Кругликов Д.А., Калякин И.Д., Яцюк Т.В. Сравнение результатов энер- гетического моделирования жилого дома с помощью разных программных средств // Вестник МЭИ. 2020. № 3. С. 31—39. DOI: 10.24160/1993-6982-2020-3-31-39.
#
1. Bashmakov I.A. Ispol'zovanie Energii i Energoeffektivnost' V Rossiyskom Zhilishchnom Sektore. Kak Sdelat' Ego Nizkouglerodnym? Energosovet. 2014;2 (33): 22—32. (in Russian).
2. Kryshov S.I., Kurilyuk I.S. Problemy Ekspertnoy Otsenki Teplovoy Zashchity Zdaniy. Zhilishchnoe Stroitel'stvo. 2016;7:3—5. (in Russian).
3. BP Statistical Review of World Energy. London: Pureprint Group Limited, 2017.
4. Doe U. Building Energy Software Tools Directory. Washington, 2012.
5. Gao H., Koch C., Wu Y. Building Information Modelling Based Building Energy Modelling: a Review. Appl. Energy. 2019;238:320—343.
6. Talapov V.V. Zhiznennyy Tsikl Zdaniya i Ego Svyaz' s Vnedreniem Tekhnologii BIM [Elektron. Resurs] https:// ardexpert.ru/article/8445 (Data Obrashcheniya 14.10.2019). (in Russian).
7. Sultanguzin I.A. i dr. Razvitie Sistemy Energosnabzheniya Studgorodka MEI na osnove Kontseptsii «Zelenogo» Stroitel'stva. Santekhnika, Otoplenie, Konditsionirovanie. 2018;1:106—109. (in Russian).
8. Kalyakin I.D. i dr. Vnedrenie Energosberegayushchikh Tekhnologiy v Sistemu Teplosnabzheniya Rekonstruiruemogo Administrativnogo Zdaniya. Energosberezhenie — Teoriya i Praktika: Trudy IX Mezhdunar. Shkoly-seminara Molodykh Uchenykh i Spetsialistov. M.: Izdat. Dom MEI, 2018:181—186. (in Russian).
9. Sultanguzin I.A. i dr. Primenenie BIM, BEM i CFD Tekhnologiy dlya Proektirovaniya, Stroitel'stva i Ekspluatatsii Energoeffektivnogo Doma. Santekhnika, Otoplenie, Konditsionirovanie. 2019;3:36—42. (in Russian).
10. Maile T, Fischer M, Bazjanac V. Building Energy Performance Simulation Tools — a Life-cycle and Interoperable Perspective. Center for Integrated Facility Eng. Working Paper. 2007;107:1—49.
11. Buonomano A, Montanaro U, Palombo A, Santini S. Dynamic Building Energy Performance Analysis: a New Adaptive Control Strategy for Stringent Thermo Hygrometric Indoor Air Requirements. Appl. Energy. 2016; 163:361—86.
12. Fayst V. Osnovnye polozheniya po proektirovaniyu passivnykh domov. M.: Konti-Print, 2015.
13. Feist W., Schnieder J. Energy Efficiency – a Key to Sustainable Housing. European Phys. J. 2009;176: 141—153.
14. Feist W., Schnieders J., Dorer V., Haas A. Re-inventing Air Heating: Convenient and Comfortable Within the Frame of the Passive House Concept. Energy and Buildings. 2005;37:1186—1203.
15. Govorin A.V., Sultanguzin I.A. Energoeffektivnyy Zhiloy Dom s Minimal'nym Potrebleniem Energii ot Vneshnikh Setey (Ashukino, Moskovskaya Oblast'). Vozobnovlyaemaya Energetika: Budushchee Ryadom: Materialy II Klimaticheskogo Foruma Gorodov Rossii. Moskva, 2018:18—21. (in Russian).
16. Sultanguzin I.A., Kalyakin I., Govorin A., Khristenko B., Yavorovsky Yu. Optimization of the Energy Efficient Active House. Proc. 3 INGENIUERTAG. Cottbus: Brandenburg University of Technology (BTU) Cottbus-Senftenberg, 2016:8—12.
17. Sultanguzin I.A. i dr. Raschet, Stroitel'stvo i Obsledovanie Fasada Energoeffektivnogo Doma. Stroitel'stvo i rekonstruktsiya. 2017;4:110—118. (in Russian).
18. O'Donnell J.T. e. a. Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames Sustainability Base BIM. Rep. Lawrence Berkeley National Laboratory. Berkeley, 2013.
19. GOST 12.1.005—88. Obshchie Sanitarno-gigienicheskie Trebovaniya k Vozdukhu Rabochey Zony (s Izmeneniem No. 1). (in Russian).
20. Obshchiy Znamenatel'. IFC — Eto Namnogo Bol'she, chem Prostoy Format Fayla [Elektron. Resurs] https://bimlib.pro/articles/obshchiy-znamenatel-ifc-eto-namnogo-bolshe-chem-prostoy-format-fayla-17/ (Data Obrashcheniya 11.03.2019). (in Russian).
21. SP 131.13330.2012. Stroitel'naya klimatologiya. Aktualizirovannaya redaktsiya SNiP 23-01-99 (s Izmeneniyami No. 1, 2). (in Russian).
---
For citation: Yavorovsky Yu.V., Sultanguzin I.A., Kruglikov D.A., Kalyakin I.D., Yatsyuk T.V. Comparison of the Results from Modeling the Power Performance of a Residential Building Using Different Software Tools. Bulletin of MPEI. 2020;3:31—39. (in Russian). DOI: 10.24160/1993-6982-2020-3-31-39.

