Application of a Phase Shifting Device for Increasing the Grid Transmission Capacity

Authors

  • Дмитрий [Dmitriy] Александрович [A.] Воденников [Vodennikov]

DOI:

https://doi.org/10.24160/1993-6982-2020-3-75-80

Keywords:

FACTS, Smart Grid, active-adaptive grids, phase shifting device

Abstract

At present, the problem of improving the performance of advanced electric power systems is solved by actively introducing and developing the technologies of active-adaptive electric networks like Smart Grid or Flexible AC Transmission Systems (FACTS). By using the FACTS technologies, it becomes possible to control power flows in large distribution networks, due to which inter-area ties are used more efficiently, the power equipment loading is optimized, and the distribution of electricity becomes on the whole more economically efficient. Phase shifting transformers (PSTs) and phase shifting devices (PSDs), which allow electric power flows to be controlled by making an additional phase shift between the device busbars at its connection point, are among the FACTS elements. PSTs, the phase shift in which is adjusted mechanically using the on-load tap changer (OLTC), are the most widely used phase shifting apparatuses. The PSD equipped with a thyristor switching system developed at the Krzhizhanovsky Energy Research Institute is considered.

Materials of scientific research and development works and methods of the mathematical modeling carried out in the RastrWin3 software environment were used.

The possibility of using the PSD equipped with a thyristor switching system for increasing the permissible power flows in the controlled Donskaya - Staryi Oskol section has been demonstrated. It has been shown that the permissible power flows for the considered section can be increased by 4–7% in different repair configurations.

For determining the optimal PSD connection point and its settings, it is recommended to use a number of criteria, such as relieving the current overload of system elements, increasing the permissible power flows through sections, decreasing the losses, increasing the steady- state and transient stability, and others.

Author Biography

Дмитрий [Dmitriy] Александрович [A.] Воденников [Vodennikov]

Deputy Chairman of the Management Board, Chief Engineer of PJSC «Federal Grid Company of Unified Energy System», e-mail: zhilkina-yv@fsk-ees.ru

References

1. Асташев М.Г., Панфилов Д.И. Фазоповоротные устройства с тиристорными коммутаторами для активноадаптивных электрических сетей // Электричество. 2013. № 8. С. 60—65.
2. Федорова М.И. Повышение управляемости фазоповоротных устройств с тиристорными коммутаторами: дис. … канд. техн. наук. М.: НИУ «МЭИ», 2016.
3. Евдокунин Г., Николаев Р., Искаков А., Оспанов Б., Утегулов Н. Фазоповоротный трансформатор впервые в СНГ применен в Казахстане // Новости электротехники. 2007. № 6 (48). С. 12—16.
4. Johansson N. Control of Dynamically Assisted Phase-shifting Transformers. Stockholm: KTH, 2008.
5. Krämer A., Ruff J. Transformer for Phase Angle Regulation Considering the Selection of On-load Tap-changers // IEEE Trans. Power Delivery. 1998. V. 13. No. 2. Pp. 518—525.
6. Verboomen J., Van Hertem D., Schavemaker P.H., Kling W.L., Belmans R. Phase Shifting Transformers: Principles and Applications // IEEE Future Power Systems Conf. Amsterdam, 2005. P. 6.
7. АО «Энергетический институт им. Г.М. Кржижановского» (АО «ЭНИН») [Офиц. сайт] http://enin.su/ (дата обращения 16.07.2009).
8. Методические указания по устойчивости энергосистем [Электрон. ресурс] https://www.so-ups.ru/fileadmin/ files/laws/regulations/Metod_uk_ust.pdf (дата обращения 14.07.2009).
---
Для цитирования: Воденников Д.А. Применение фазоповоротного устройства для увеличения пропускной способности электрической сети // Вестник МЭИ. 2020. № 3. С. 75—80. DOI: 10.24160/1993-6982-2020-3-75-80.
#
1. Astashev M.G., Panfilov D.I. Fazopovorotnye Ustroystva s Tiristornymi Kommutatorami dlya Aktivnoadaptivnykh Elektricheskikh Setey. Elektrichestvo. 2013; 8:60—65. (in Russian).
2. Fedorova M.I. Povyshenie Upravlyaemosti Fazopovorotnykh Ustroystv s Tiristornymi Kommutatorami: Dis. … Kand. Tekhn. Nauk. M.: NIU «MEI», 2016. (in Russian).
3. Evdokunin G., Nikolaev R., Iskakov A., Ospanov B., Utegulov N. Fazopovorotnyy Transformator Vpervye v SNG Primenen v Kazakhstane. Novosti Elektrotekhniki. 2007;6 (48):12—16. (in Russian).
4. Johansson N. Control of Dynamically Assisted Phase-shifting Transformers. Stockholm: KTH, 2008.
5. Krämer A., Ruff J. Transformer for Phase Angle Regulation Considering the Selection of On-load Tap-changers. IEEE Trans. Power Delivery. 1998;13;2: 518—525.
6. Verboomen J., Van Hertem D., Schavemaker P.H., Kling W.L., Belmans R. Phase Shifting Transformers: Principles and Applications. IEEE Future Power Systems Conf. Amsterdam, 2005:6.
7. AO «Energeticheskiy Institut im. G.M. Krzhizhanovskogo» (AO «ENIN») [Ofits. Sayt] http://enin.su/ (Data Obrashcheniya 16.07.2009). (in Russian).
8. Metodicheskie ukazaniya po Ustoychivosti Energosistem [Elektron. Resurs] https://www.so-ups.ru/fileadmin/files/laws/regulations/Metod_uk_ust.pdf (Data Obrashcheniya 14.07.2009). (in Russian).
---
For citation: Vodennikov D.А. Application of a Phase Shifting Device for Increasing the Grid Transmission Capacity. Bulletin of MPEI. 2020;3:75—80. (in Russian). DOI: 10.24160/1993-6982-2020-3-75-80.

Published

2019-02-28

Issue

Section

Power Electronics (05.09.12)