A Procedure for Calculating the Operation Modes of Electrochemical Power Installations with Solid Oxide Electrolyte
DOI:
https://doi.org/10.24160/1993-6982-2020-4-42-48Keywords:
fuel cell power plants, internal methane conversion, material and energy balances, distributed power generationAbstract
Fuel cell power plants (FCPPs) are considered as one of the key future energy technologies. Along with machine-based power generation technologies (gas turbine units, diesel generator sets, combined cycle plants, Stirling engine plants, etc.), FCPPs can also be used in cogeneration plants for combined generation of electricity and heat. Fuel cells can find use in Russia for distributed electricity generation, including autonomous power supply to consumers based on the use of pipeline and liquefied natural gas, liquefied hydrocarbon gases, as well as renewable energy sources, especially in cogeneration modes of operation. A procedure for calculating the operation modes of a fuel cell power plant is proposed, assuming that the combustible elements contained in the fuel are fully oxidized, transforming into inert gases. The flowrates of products before and after the reactions at the FCPP inlet and outlet are determined by using the material balance method. The material and energy balances of fuel cells are calculated taking as an example an SOFC-type FCPP with a solid oxide electrolyte for direct internal conversion of methane and also during operation on pure hydrogen in a combination with a windmill. The possibility of storing energy in hydrogen storage devices is estimated. In view of their highest electric and cogeneration efficiencies, solid oxide FCPPs using natural gas (methane) as fuel (reducing agent) and atmospheric oxygen (air) as oxidizer are considered to be promising ones for cogeneration-type electric power sources. The required methane and air flowrates are determined assuming that the oxygen content in air is equal to 21%. The potential fuel capacity was calculated for the installation’s electric power equal to 15 MW and its heat load in the cogeneration mode equal to 6 MW. This thermal power is removed from the FCPP fuel cell unit through a delivery water heater for its further use. The hydrogen storage device can be made as a gas tank or a gas cylinder. Obviously, pressurized gaseous hydrogen storing systems are simple and do not require special equipment for retrieving gas from the storage.
References
2. Бредихин С.И. и др. Стационарные энергетические установки с топливными элементами: материалы, технологии, рынки. М: Изд-во НТФ «Энергопрогресс», 2017.
3. Коровин Н.В. Топливные элементы и электрохимические энергоустановки. М.: Изд-во МЭИ, 2005.
4. Батенин В.Г. Баранов Н.Н. Создание новых видов автономных энергоустановок на основе методов прямого преобразования энергии // Известия РАН. Серия «Энергетика». 1997. № 2. С. 3—27.
5. Das Erste Europaische 250-kW-PEM-Brennstoff-Zel-lenprojekt // Elektrizitatswirtschaft. 2000. V. 15. Pp. 58—62.
6. Smith D. Large Utilities Tom to Solid Oxide Systems. Dartford: Modern Power Systems. Germany Suppl., 2000. Pp. 27—30.
7. Полинг Л. Общая химия. М.: Мир, 1974.
8. Канарёв Ф.М. Начала физхимии микромира. Т. 1, 2. Краснодар: Изд-во Кубанского гос. аграрного ун-та, 2009.
---
Для цитирования: Цгоев Р.С. Методика расчёта режимов электрохимических энергоустановок с твёрдооксидным электролитом // Вестник МЭИ. 2020. № 4. С. 42—48. DOI: 10.24160/1993-6982-2020-4-42-48.
#
1. Popel' O.S., Tarasenko A.B., Filippov S.P. Energoustanovki na Osnove Toplivnykh Elementov: Sovremennoe Sostoyanie i perspektivy. Teploenergetika. 2018; 12:5—23. (in Russian).
2. Bredikhin S.I. i dr. Statsionarnye Energeticheskie Ustanovki s Toplivnymi Elementami: Materialy, Tekhnologii, Rynki. M: Izd-vo NTF «Energoprogress», 2017. (in Russian).
3. Korovin N.V. Toplivnye Elementy i Elektrokhimicheskie Energoustanovki. M.: Izd-vo MEI, 2005. (in Russian).
4. Batenin V.G. Baranov N.N. Sozdanie Novykh Vidov Avtonomnykh Energoustanovok na Osnove Metodov Pryamogo Preobrazovaniya Energii. Izvestiya RAN. Seriya «Energetika». 1997;2:3—27. (in Russian).
5. Das Erste Europaische 250-kW-PEM-Brennstoff-Zellenprojekt. Elektrizitatswirtschaft. 2000;15:58—62.
6. Smith D. Large Utilities Tom to Solid Oxide Systems. Dartford: Modern Power Systems. Germany Suppl., 2000:27—30.
7. Poling L. Obshchaya Khimiya. M.: Mir, 1974. (in Russian).
8. Kanarev F.M. Nachala Fizkhimii Mikromira. T. 1, 2. Krasnodar: Izd-vo Kubanskogo Gos. Agrarnogo Un-ta, 2009. (in Russian).
---
For citation: Tsgoev R.S. A Procedure for Calculating the Operation Modes of Electrochemical Power Installations with Solid Oxide Electrolyte. Bulletin of MPEI. 2020;4:42—48. (in Russian). DOI: 10.24160/1993-6982-2020-4-42-48.

