The Drawbacks of Baromembrane Water Treatment Technologies and Methods Used around the World for Eliminating Them

Authors

  • Антонина [Antonina] Андреевна [A.] Филимонова [Filimonova]
  • Эдик [Edik] Койрунович [K.] Аракелян [Arakelyan]
  • Наталья [Natalya] Дмитриевна [D.] Чичирова [Chichirova]
  • Андрей [Andrey] Александрович [A.] Чичиров [Chichirov]
  • Станислав [Stanislav] Радикович [R.] Саитов [Saitov]
  • Руслан [Ruslan] Владимирович [V.] Бускин [Buskin]

DOI:

https://doi.org/10.24160/1993-6982-2020-4-98-112

Keywords:

baromembrane methods, fouling, concentrate, chemical treatment, waste effluent disposal

Abstract

The critical problems encountered during the operation of baromembrane plants, namely, deposits on the membranes and a large amount of concentrate effluents, are discussed in detail. The deposits on membranes are subdivided into organic, inorganic, colloidal and microbiological. For each type of deposit, its physical and chemical properties and formation mechanisms are described in detail. The deposit control methods are presented. The list of key solutions includes, in particular, water pretreatment measures, such as conventional pretreatment methods, including coagulation, clarification, flocculation, oxidation, and adsorption, and membrane methods, including microfiltration, ultrafiltration, and nanofiltration. Combined use of conventional and membrane methods is the most efficient pre-treatment technique. The pre-treatment efficiency is closely linked with the types of agents (coagulants, adsorbents, oxidizers, etc.), dosage, dosing regimes (batch or continuous), dosage point, mixing methods, temperature, properties (hydrophobicity, charge density, molecular weight and molecule sizes) of aqueous impurities (colloidal or dissolved, organic or inorganic), solution medium (pH and ionic strength), and membrane characteristics (membrane charge, hydrophobicity, and surface morphology). Physical and chemical methods for removing membrane contaminations are outlined, classification of washing chemical reagents is given, and the mechanisms of their influence on various types of deposits are described. Recommendations on selecting the reagents are proposed. To solve the wastewater disposal problem, the methods for reducing the baromembrane concentrate volume have been analyzed, including the known ones and those used at thermal power facilities in Russia. The zero-waste effluent water treatment scheme for the Kazan CHPP-2 is considered as a model of a closed water utilization system based on the use of membrane technologies. A thorough preliminary analysis, mathematical, physical and chemical calculations, and modeling the operation of plants, all based on worldwide scientific experience are the key to successful operation of the equipment with high economic indicators.

Author Biographies

Антонина [Antonina] Андреевна [A.] Филимонова [Filimonova]

Ph.D. (Medical), Assistant Professor of Chemistry Dept., Kazan State Power Engineering University, e-mail: aachichirova@mail.ru

Эдик [Edik] Койрунович [K.] Аракелян [Arakelyan]

Dr.Sci. (Techn.), Professor of Automated Control Systems for Thermal Processes Dept., NRU MPEI, e-mail: Edik_arakelyan@inbox.ru

Наталья [Natalya] Дмитриевна [D.] Чичирова [Chichirova]

Dr.Sci. (Chemical), Professor, Head of Thermoelectric Plants Dept., Kazan State Power Engineering University, e-mail: ndchichirova@mail.ru

Андрей [Andrey] Александрович [A.] Чичиров [Chichirov]

Dr.Sci. (Chemical), Professor, Head of Chemistry Dept., Kazan State Power Engineering University, e-mail: pinpin3@yandex.ru

Станислав [Stanislav] Радикович [R.] Саитов [Saitov]

Senior Lecturer of Thermoelectric Plants Dept., Kazan State Power Engineering University, e-mail: caapel@mail.ru

Руслан [Ruslan] Владимирович [V.] Бускин [Buskin]

Senior Lecturer of Thermoelectric Plants Dept., Kazan State Power Engineering University, e-mail: arslan15@yandex.ru

References

1. Веселовская Е.В., Лысенко С.Е. Экономические аспекты модернизации водоподготовительных установок блочных тепловых электрических станций // Известия высших учебных заведений Северо-Кавказского региона. Серия «Технические науки». 2018. № 4(200). С. 45—50.
2. Правила технической эксплуатации электрических станций и сетей Российской Федерации. СПБ.: ДЕАН, 2004.
3. СТО 70238424.27.100.013—2009. Водоподготовительные установки и водно-химический режим ТЭС. Условия создания. Нормы и требования.
4. Чичирова Н.Д. и др. Анализ опыта внедрения баромембранных технологий на ТЭС РФ // Труды Академэнерго. 2013. № 4. С. 70—82.
5. Чичирова Н.Д., Власов С.М. Баромембранные технологии в энергетике. Казань: Изд-во Казанского гос. энергетического ун-та, 2011.
6. Пантелеев А.А. и др. Выбор технологии химической очистки обратноосмотических установок на промышленных предприятиях // Новое в российской электроэнергетике. 2016. № 4. С. 22—31.
7. Guoа W., Ngoa Н.-Н., Lib J. A Mini-review on Membrane Fouling // Bioresource Techn. 2012. No. 122. Рp. 27—34.
8. Ang W.S., Lee S., Elimelech M. Chemical and Physical Aspects of Cleaning of Organic-fouled Reverse Osmosis Membranes // J. Membrane Sci. 2006. No. 272. Рp.198—210.
9. Le Gouellec Y.D.S., Elimelech M. Calcium Sulfate (Gypsum) Scaling in Nanofiltration of Agricultural Drainage Water // J Membr. Sci. 2002. V. 205. No. 1—2. Pp. 279—291.
10. Flemming H.C. Biofouling — the Achilles Heel of Membrane Processes // Desalination. 1997. No. 113. Рp. 215—225.
11. Ridgway H.F. Membrane Biofouling in Water Treatment. Membrane Processes. N.-Y.: McGraw Hill, 1996.
12. Li Q., Elimelech M. Organic Fouling and Chemical Cleaning of Nanofiltration Membranes: Measurements and Mechanisms // Environmental Sci. and Techn. 2004. V. 38(17). Рp. 4683—4693.
13. Dong B. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling // Membranes. 2013. No. 3. Рp. 226—241.
14. Zhou H., Smith D.W. Advanced Technologies in Water and Wastewater Treatment // J. Environmental Eng. and Sci. 2002. No. 1. Рp. 247—264.
15. Pandey S.R. e. a. Fouling in Reverse Osmosis (RO) Membrane in Water Recovery from Secondary Effluent: a Review // Rev. Environ Sci. Biotechnol. 2012. No. 11. Рp. 125—145.
16. Jiang S., Li Y., Ladewig B.P. A Review of Reverse Osmosis Membrane Fouling and Control Strategies // Sci. Total Environment. 2017. No. 595. Рp. 567—583.
17. Van Hoof S.C.J.M., Minnery J.G., Mack B. Performing a Membrane Autopsy // Intern. Desalination and Water Reuse. 2002. No. 11(4). Рp. 40—46.
18. Shon H.K. Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment // Critical Rev. in Environmental Sci. and Techn. 2006. No. 36(4). Рp. 327—374.
19. Drewes J.E., Fox P. Fate of Natural Organic Matter (NOM) During Ground Water Recharge Using Reclaimed Water // Water Sci. and Techn. 1999. No. 40(9). Рp. 241—248.
20. Ходырев Б.Н., Федосеев Б.С., Щукина М.Ю., Ямгуров Ф.Ф. Проблема удаления природных и техногенных органических веществ из воды на установках обратного осмоса // Теплоэнергетика. 2001. № 6. С. 71—76.
21. Tang S., Wang Z., Wu Z., Zhou Q. Role of Dissolved Organic Matters (DOM) in Membrane Fouling of Membrane Bioreactors for Municipal Wastewater Treatment // J. Hazardous Materials. 2010. V. 178. Рp. 377—384.
22. AWWA Membrane Technology Research Committee. Committee Rep.: Recent Advances and Research Needs in Membrane Fouling // American Water Works Association J. 2005. V. 97(8). Рp. 79—89.
23. Zhang M.M., Li C., Benjamin M.M., Chang Y.J. Fouling and Natural Organic Matter Removal in Adsorbent/Membrane Systems for Drinking Water Treatment // Env-ronmental Sci. and Techn. 2003. V. 37(8). Рp. 1663—1669.
24. Jegatheesan V. Effects of Natural Organic Compounds on the Removal of Organic Carbon in Coagulation and Flocculation Processes // Water Sci. Technol. Water Suppl. 2002. V. 2(5—6). Рp. 473—479.
25. Kipton H., Powell J., Town R.M. Solubility and Fractionation of Humic Acids Effect of pH and Ionic Medium // Analytica Chimica Acta. 1992. V. 267. Рp. 47—54.
26. Yuan W., Zydney A.L. Humic Acid Fouling During Microfiltration // J. Membrane Sci. 1999. V. 157. Рp. 1—12.
27. Flemming H.C. Antifouling Strategies in Technical Systems − a Short Review // Water Sci. Technol. 1996. V. 34(5—6). Рp. 517—524.
28. Fan L., Harris J.L., Roddick F.A., Booker N.A. Influence of the Characteristics of Natural Organic Matter on the Fouling of Microfiltration Membranes // Water Research. 2001. V. 35. Рp. 4455—4463.
29. Bellona C. Factors Affecting the Rejection of Organic Solutes During NF/RO Treatment — a Literature Review // Water Research. 2004. V. 38. No. 12. Рp. 2795—2809.
30. Schneider R.P. Analysis of Foulant Layer in All Elements of an RO train // J. Member Sci. 2005. V. 261. No. 1—2. Рp. 152—162.
31. Чичирова Н.Д., Чичиров А.А., Филимонова А.А., Саитов С.Р. Повышение экологических и экономических характеристик водоподготовительных установок ТЭС на основе баромембранных технологий // Теплоэнергетика. 2017. № 12. С. 67—77.
32. Xie R.J., Gomez M.J., Xing Y.J., Klose P.S. Fouling Assessment in a Municipal Water Reclamation Reverse Osmosis System as Related to Concentration Factor // J. Environmental Eng. and Sci. 2004. V. 3(1). Рp. 61—72.
33. Юрчевский Е.Б., Первов А.Г., Андрианов А.П. Изучение процесса формирования осадков взвешенных, коллоидных, органических и кристаллических веществ на поверхности мембран и пути увеличения срока работы мембранных систем до химической промывки // Энергосбережение и водоподготовка. 2006. № 3(41). С. 3—8.
34. Shirazi S., Lin C.J., Chen D. Inorganic Fouling of Pressure-driven Membrane Processes — a Critical Review // Desalination. 2010. V. 250. No. 1. Рp. 236—248.
35. Levine A.D., Tchobanoglous G., Asano T. Size Distributions of Particulate Contaminants in Wastewater and Their Impact on Treatability // Water Research. 1991. V. 25. No. 8. Рp. 911—922.
36. Yiantsios S.G., Karabelas A.J. The Effect of Colloid Stability on Membrane Fouling // Desalination. 1998. V. 118. No. 1—3. Рp. 143—152.
37. Kennedy M., Zhizhong L., Febrina E., van Hoof S., Shippers J. Effects of Coagulation on Filtration Mechanisms in Dead-end Ultrafiltration // Water Sci. and Techn. Water Suppl. 2003. V. 3(5). Рp. 109—116.
38. Howe K.J., Clark M.M. Fouling of Microfiltration and Ultrafiltration Membranes by Natural Waters // Environmental Sci. and Technol. 2002. V. 36(16). Рp. 3571—3576.
39. Lay W.C.L., Liu Y., Fane A.G. Impacts of Salinity on the Performance of High Retention Membrane Bioreactors for Water Reclamation: a Review // Water Research. 2010. V. 44(1). Рp. 21—40.
40. Chong, T.H., Wong, F.S., Fane, A.G. Implications of Critical flux and Cake Enhanced Osmotic Pressure (CEOP) on Colloidal Fouling in Reverse Osmosis: Experimental Observations // J. Membrane Sci. 2008. V. 314(1—2). Рp. 101—111.
41. Hoek E.M.V., Elimelech M. Cake-enhanced Concentration Polarization: a New Fouling Mechanism for Salt-rejecting Membranes // Environmental Sci. and Technol. 2003. V. 37(24). Рp. 5581—5588.
42. Xu P., Bellona C., Drewes J.E. Fouling of Nanofiltration and Reverse Osmosis Membranes During Municipal Wastewater Reclamation: Membrane Autopsy Results from Pilot-scale Investigations // J. Membr. Sci. 2010. V. 353(1—2). Рp. 111—121.
43. Shon H.K., Vigneswaran S., Kandasamy J., Cho J. Membrane Technology for Organic Removal in Wastewater // Water and Wastewater Treatment Technologies. Oxford: Eolss Publ., 2009.
44. Yang H.L., Huang C., Pan J.R. Characteristics of RO Foulants in a Brackish Water Desalination Plant // Desalination. 2008. V. 220. Рp. 353—358.
45. Flemming H.C., Wingender J. Relevance of Microbial Extracellular Polymeric Substances (EPSs). Pt. I. Structural and Ecological Aspects // Water Sci. and Technol. 2001. V. 43(6). Рp. 1—8.
46. Rosenberger, S., Kraume M. Filterability of Activated Sludge in Membrane Bioreactors // Desalination. 2003. V. 146. No. 2. Рp. 373—379.
47. Schäfer A.I. Nano-filtration — Principle and Applications. Oxford: Elsevier Advanced Techn, 2005.
48. Bae H., Kim H., Jeong S., Lee S. Changes in the Relative Abundance of Biofilm Forming Bacteria by Conventional Sand-filtration and Microfiltration as Pretreatments for Seawater Reverse Osmosis Desalination // Desalination. 2011. V. 273. No. 2—3. Рp. 258—266.
49. Qiao X. e. a. Coagulation Pretreatment for a Large-scale Ultrafiltration Process Treating Water from the Taihu River // Desalination. 2008. V. 230. No. 1—3. Рp. 305—313.
50. Young Hong L.I., Wang J., Zhang W., Zhang X.J., Chen C. Effects of Coagulation on Submerged Ultra-filtration Membrane Fouling Caused by Particles and Natural Organic Matter (NOM) // Chinese Sci. Bull. 2011. V. 56. Рp. 584—590.
51. Liang H., Gong W., Chen J., Li G. Cleaning of Fouled Ultrafiltration (UF) Membrane by Algae During Reservoir Water Treatment // Desalination. 2008. V. 220. No. 1—3. Рp. 267—272.
52. Gao W. Membrane Fouling Control in Ultrafiltration Technology for Drinking Water Production: a Review // Desalination. 2011. V. 272. No. 1—3. Рp. 1—8.
53. Chatkaew T., Stephanie L., Corinne C. Adsorption Combined with Ultrafiltration to Remove Organic Matter from Seawater // Water Research. 2011. V. 45. No. 19. Рp. 6362—6370.
54. Campinas M., Rosa M.J. Assessing PAC Contribution to the NOM Fouling Control in PAC/UF Systems // Water Research. 2010. V. 44. No. 5. Рp. 1636—1644.
55. Choo K.-H., Lee H., Choi S.-J. Iron and Manganese Removal and Membrane Fouling During UF in Conjunction with Prechlorination for Drinking Water Treatment // J. Membr. Sci. 2005. V. 267(1). Рp. 18—26.
56. Wang X., Wang L., Liu Y., Duan W. Ozonation Pretreatment for Ultrafiltration of the Secondary Effluent // J. Membr. Sci. 2007. V. 287(2). Рp. 187—191.
57. Farahbakhsh K., Svrcek C., Guest R.K., Smith D.W. A Review of the Impact of Chemical Pretreatment on Low Pressure Water Treatment Membranes // J. Environ. Eng. Sci. 2004. V. 3(4). Рp. 237—253.
58. You S.H., Hsu W.C., Tseng D.H. Effect and Mechanism of Ultrafiltration Membrane Fouling Removal by Ozonation // Desalination. 2006. V. 202. Рp. 224—230.
59. Kim J., Davies S.H.R., Baumann M.J., Tarabara V.V., Masten S.J. Effect of Ozone Dosage and Hydrodynamic Conditions on the Permeate Flux in a Hybrid Ozonation — Ceramic Ultrafiltration System Treating Natural Waters // J. Membr. Sci. 2008. V. 311. No. 1—2. Pp. 165—172.
60. Vrouwenvelder J.S., van der Kooij D. Diagnosis of Fouling Problems of NF and RO Membrane Installations by a Quick Scan // Desalination 2003. V. 153. No. 1—3. Рp. 121—124.
61. Sweity A., Oren Y., Ronen Z., Herzberg M. The Influence of Antiscalants on Biofouling of RO Membranes in Seawater Desalination // Water Research. 2013. V. 47(10). Рp. 3389—3398.
62. Vrouwenvelder J.S. e. a. Phosphate Limitation to Control Biofouling // Water Research. 2010. V. 44(11). Рp. 3454—3466.
63. Sohrabi M.R., Madaeni S.S., Khosravi M., Ghaedi A.M. Chemical Cleaning of Reverse Osmosis and Nanofiltration Membranes Fouled by Licorice Aqueous Solutions // Desalination. 2011. V. 267(1). Рp. 93—100.
64. Qin J.J., Oo M.H., Kekre K.A., Liberman B. Development of Novel Backwash Cleaning Technique for Reverse Osmosis in Reclamation of Secondary Effluent // J. Membr. Sci. 2010. V. 346(1). Рp. 8—14.
65. Li Y.-S., Shi L.-C., Gao X., Huang J.-G. Cleaning Effects of Oxalic Acid Under Ultrasound to the Used Reverse Osmos is Membranes with an Online Cleaning and Monitoring System // Desalination. 2016. V. 390. Рp. 62—71.
66. She Q., Wang R., Fane A.G., Tang C.Y. Membrane Fouling in Osmotically Driven Membrane Processes: a Review // J. Membr. Sci. 2016. V. 499. Рp. 201—233.
67. Joo S.H., Tansel B. Review Novel Technologies for Reverse Osmosis Concentrate Treatment // J. Environmental Management. 2015. V. 150. Рp. 322—335
68. Юрчевский Е.Б., Солодянников В.В. Сточные воды мембранных обессоливающих установок и их утилизация. Ультрафильтрация // Энергосбережение и водоподготовка. 2017. № 2(106). С. 3—13.
69. Пат. № 2551499 РФ. Водоподготовительная установка тепловой электроцентрали / А.А. Чичиров и др. // Бюл. изобрет. 2015. № 15.
70. Власова А.Ю., Чичирова Н.Д., Чичиров А.А., Филимонова А.А., Власов С.М. Ресурсосберегающая технология нейтрализации и очистки кислых и жестких высокоминерализированных жидких отходов ионитной водоподготовительной установки ТЭС // Вода и экология: проблемы и решения. 2017. № 2(20). С. 3—17.
---
Для цитирования: Филимонова А.А., Аракелян Э.К., Чичирова Н.Д., Чичиров А.А., Саитов С.Р., Бускин Р.В. Недостатки баромембранных методов водоподготовки и способы их устранения в мировой практике // Вестник МЭИ. 2020. № 4. С. 98—112. DOI: 10.24160/1993-6982-2020-4-98-112.
#
1. Veselovskaya E.V., Lysenko S.E. Ekonomicheskie Aspekty Modernizatsii Vodopodgotovitel'nykh Ustanovok Blochnykh Teplovykh Elektricheskikh Stantsiy. Izvestiya Vysshikh Uchebnykh Zavedeniy Severo-Kavkazskogo Regiona. Seriya «Tekhnicheskie Nauki». 2018;4(200): 45—50. (in Russian).
2. Pravila Tekhnicheskoy Ekspluatatsii Elektricheskikh Stantsiy i Setey Rossiyskoy Federatsii. SPB.: DEAN, 2004. (in Russian).
3. STO 70238424.27.100.013—2009. Vodopodgotovitel'nye Ustanovki i Vodno-khimicheskiy Rezhim TES. Usloviya Sozdaniya. Normy i Trebovaniya. (in Russian).
4. Chichirova N.D. i dr. Analiz Opyta Vnedreniya Baromembrannykh Tekhnologiy na TES RF. Trudy Akademenergo. 2013;4:70—82. (in Russian).
5. Chichirova N.D., Vlasov S.M. Baromembrannye Tekhnologii v Energetike. Kazan': Izd-vo Kazanskogo Gos. Energeticheskogo Un-ta, 2011. (in Russian).
6. Panteleev A.A. i dr. Vybor Tekhnologii Khimicheskoy Ochistki Obratnoosmoticheskikh Ustanovok na Promyshlennykh Predpriyatiyakh. Novoe v Rossiyskoy Elektroenergetike. 2016;4:22—31. (in Russian).
7. Guoа W., Ngoa Н.-Н., Lib J. A Mini-review on Membrane Fouling. Bioresource Techn. 2012;122: 27—34.
8. Ang W.S., Lee S., Elimelech M. Chemical and Physical Aspects of Cleaning of Organic-fouled Reverse Osmosis Membranes. J. Membrane Sci. 2006;272:198—210.
9. Le Gouellec Y.D.S., Elimelech M. Calcium Sulfate (Gypsum) Scaling in Nanofiltration of Agricultural Drainage Water. J Membr. Sci. 2002;205;1—2:279—291.
10. Flemming H.C. Biofouling — the Achilles Heel of Membrane Processes. Desalination. 1997;113:215—225.
11. Ridgway H.F. Membrane Biofouling in Water Treatment. Membrane Processes. N.-Y.: McGraw Hill, 1996.
12. Li Q., Elimelech M. Organic Fouling and Chemical Cleaning of Nanofiltration Membranes: Measurements and Mechanisms. Environmental Sci. and Techn. 2004;38(17): 4683—4693.
13. Dong B. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling. Membranes. 2013;3:226—241.
14. Zhou H., Smith D.W. Advanced Technologies in Water and Wastewater Treatment. J. Environmental Eng. and Sci. 2002;1:247—264.
15. Pandey S.R. e. a. Fouling in Reverse Osmosis (RO) Membrane in Water Recovery from Secondary Effluent: a Review. Rev. Environ Sci. Biotechnol. 2012;11:125—145.
16. Jiang S., Li Y., Ladewig B.P. A Review of Reverse Osmosis Membrane Fouling and Control Strategies. Sci. Total Environment. 2017;595:567—583.
17. Van Hoof S.C.J.M., Minnery J.G., Mack B. Performing a Membrane Autopsy. Intern. Desalination and Water Reuse. 2002;11(4):40—46.
18. Shon H.K. Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment. Critical Rev. in Environmental Sci. and Techn. 2006;36(4):327—374.
19. Drewes J.E., Fox P. Fate of Natural Organic Matter (NOM) During Ground Water Recharge Using Reclaimed Water. Water Sci. and Techn. 1999;40(9):241—248.
20. Khodyrev B.N., Fedoseev B.S., Shchukina M.Yu., Yamgurov F.F. Problema Udaleniya Prirodnykh i Tekhnogennykh Organicheskikh Veshchestv iz Vody na Ustanovkakh Obratnogo Osmosa. Teploenergetika. 2001;6:71—76. (in Russian).
21. Tang S., Wang Z., Wu Z., Zhou Q. Role of Dissolved Organic Matters (DOM) in Membrane Fouling of Membrane Bioreactors for Municipal Wastewater Treatment. J. Hazardous Materials. 2010;178:377—384.
22. AWWA Membrane Technology Research Committee. Committee Rep.: Recent Advances and Research Needs in Membrane Fouling. American Water Works Association J. 2005;97(8):79—89.
23. Zhang M.M., Li C., Benjamin M.M., Chang Y.J. Fouling and Natural Organic Matter Removal in Adsorbent/Membrane Systems for Drinking Water Treatment. Environmental Sci. and Techn. 2003;37(8):1663—1669.
24. Jegatheesan V. Effects of Natural Organic Compounds on the Removal of Organic Carbon in Coagulation and Flocculation Processes. Water Sci. Technol. Water Suppl. 2002;2(5—6):473—479.
25. Kipton H., Powell J., Town R.M. Solubility and Fractionation of Humic Acids Effect of pH and Ionic Medium. Analytica Chimica Acta. 1992;267:47—54.
26. Yuan W., Zydney A.L. Humic Acid Fouling During Microfiltration. J. Membrane Sci. 1999;157:1—12.
27. Flemming H.C. Antifouling Strategies in Technical Systems − a Short Review. Water Sci. Technol. 1996;34(5—6):517—524.
28. Fan L., Harris J.L., Roddick F.A., Booker N.A. Influence of the Characteristics of Natural Organic Matter on the Fouling of Microfiltration Membranes. Water Research. 2001;35:4455—4463.
29. Bellona C. Factors Affecting the Rejection of Organic Solutes During NF/RO Treatment — a Literature Review. Water Research. 2004;38;12:2795—2809.
30. Schneider R.P. Analysis of Foulant Layer in All Elements of an RO train. J. Member Sci. 2005;261;1—2: 152—162.
31. Chichirova N.D., Chichirov A.A., Filimonova A.A., Saitov S.R. Povyshenie Ekologicheskikh i Ekonomicheskikh Kharakteristik Vodopodgotovitel'nykh Ustanovok TES na Osnove Baromembrannykh Tekhnologiy. Teploenergetika. 2017;12:67—77. (in Russian).
32. Xie R.J., Gomez M.J., Xing Y.J., Klose P.S. Fouling Assessment in a Municipal Water Reclamation Reverse Osmosis System as Related to Concentration Factor. J. Environmental Eng. and Sci. 2004;3(1):61—72.
33. Yurchevskiy E.B., Pervov A.G., Andrianov A.P. Izuchenie Protsessa Formirovaniya Osadkov Vzveshennykh, Kolloidnykh, Organicheskikh i Kristallicheskikh Veshchestv na Poverkhnosti Membran i Puti Uvelicheniya Sroka Raboty Membrannykh Sistem do Khimicheskoy Promyvki. Energosberezhenie i Vodopodgotovka. 2006; 3(41):3—8. (in Russian).
34. Shirazi S., Lin C.J., Chen D. Inorganic Fouling of Pressure-driven Membrane Processes — a Critical Review. Desalination. 2010;250;1:236—248.
35. Levine A.D., Tchobanoglous G., Asano T. Size Distributions of Particulate Contaminants in Wastewater and Their Impact on Treatability. Water Research. 1991;25;8:911—922.
36. Yiantsios S.G., Karabelas A.J. The Effect of Colloid Stability on Membrane Fouling. Desalination. 1998;118;1—3:143—152.
37. Kennedy M., Zhizhong L., Febrina E., van Hoof S., Shippers J. Effects of Coagulation on Filtration Mechanisms in Dead-end Ultrafiltration. Water Sci. and Techn. Water Suppl. 2003;3(5):109—116.
38. Howe K.J., Clark M.M. Fouling of Microfiltration and Ultrafiltration Membranes by Natural Waters. Environmental Sci. and Technol. 2002;36(16):3571—3576.
39. Lay W.C.L., Liu Y., Fane A.G. Impacts of Salinity on the Performance of High Retention Membrane Bioreactors for Water Reclamation: a Review. Water Research. 2010;44(1):21—40.
40. Chong, T.H., Wong, F.S., Fane, A.G. Implications of Critical flux and Cake Enhanced Osmotic Pressure (CEOP) on Colloidal Fouling in Reverse Osmosis: Experimental Observations. J. Membrane Sci. 2008;314(1—2): 101—111.
41. Hoek E.M.V., Elimelech M. Cake-enhanced Concentration Polarization: a New Fouling Mechanism for Salt-rejecting Membranes. Environmental Sci. and Technol. 2003;37(24):5581—5588.
42. Xu P., Bellona C., Drewes J.E. Fouling of Nanofiltration and Reverse Osmosis Membranes During Municipal Wastewater Reclamation: Membrane Autopsy Results from Pilot-scale Investigations. J. Membr. Sci. 2010;353(1—2):111—121.
43. Shon H.K., Vigneswaran S., Kandasamy J., Cho J. Membrane Technology for Organic Removal in Wastewater. Water and Wastewater Treatment Tecnologies. Oxford: Eolss Publ., 2009.
44. Yang H.L., Huang C., Pan J.R. Characteristics of RO Foulants in a Brackish Water Desalination Plant. Desalination. 2008;220:353—358.
45. Flemming H.C., Wingender J. Relevance of Microbial Extracellular Polymeric Substances (EPSs). Pt. I. Structural and Ecological Aspects. Water Sci. and Technol. 2001;43(6):1—8.
46. Rosenberger, S., Kraume M. Filterability of Activated Sludge in Membrane Bioreactors. Desalination. 2003;146;2:373—379.
47. Schäfer A.I. Nano-filtration — Principle and Applications. Oxford: Elsevier Advanced Techn, 2005.
48. Bae H., Kim H., Jeong S., Lee S. Changes in the Relative Abundance of Biofilm Forming Bacteria by Conventional Sand-filtration and Microfiltration as Pretreatments for Seawater Reverse Osmosis Desalination. Desalination. 2011;273;2—3:258—266.
49. Qiao X. e. a. Coagulation Pretreatment for a Large-scale Ultrafiltration Process Treating Water from the Taihu River . Desalination. 2008;230;1—3:305—313.
50. Young Hong L.I., Wang J., Zhang W., Zhang X.J., Chen C. Effects of Coagulation on Submerged Ultrafiltration Membrane Fouling Caused by Particles and Natural Organic Matter (NOM). Chinese Sci. Bull. 2011; 56:584—590.
51. Liang H., Gong W., Chen J., Li G. Cleaning of Fouled Ultrafiltration (UF) Membrane by Algae During Reservoir Water Treatment. Desalination. 2008;220;1—3:267—272.
52. Gao W. Membrane Fouling Control in Ultrafiltration Technology for Drinking Water Production: a Review. Desalination. 2011;272;1—3:1—8.
53. Chatkaew T., Stephanie L., Corinne C. Adsorption Combined with Ultrafiltration to Remove Organic Matter from Seawater. Water Research. 2011;45;19:6362—6370.
54. Campinas M., Rosa M.J. Assessing PAC Contribution to the NOM Fouling Control in PAC/UF Systems. Water Research. 2010;44;5:1636—1644.
55. Choo K.-H., Lee H., Choi S.-J. Iron and Manganese Removal and Membrane Fouling During UF in Conjunction with Prechlorination for Drinking Water Treatment. J. Membr. Sci. 2005; 267(1):18—26.
56. Wang X., Wang L., Liu Y., Duan W. Ozonation Pretreatment for Ultrafiltration of the Secondary Effluent. J. Membr. Sci. 2007;287(2):187—191.
57. Farahbakhsh K., Svrcek C., Guest R.K., Smith D.W. A Review of the Impact of Chemical Pretreatment on Low Pressure Water Treatment Membranes. J. Environ. Eng. Sci. 2004;3(4):237—253.
58. You S.H., Hsu W.C., Tseng D.H. Effect and Mechanism of Ultrafiltration Membrane Fouling Removal by Ozonation. Desalination. 2006;202:224—230.
59. Kim J., Davies S.H.R., Baumann M.J., Tarabara V.V., Masten S.J. Effect of Ozone Dosage and Hydrodynamic Conditions on the Permeate Flux in a Hybrid Ozonation — Ceramic Ultrafiltration System Treating Natural Waters. J. Membr. Sci. 2008;311;1—2:165—172.
60. Vrouwenvelder J.S., van der Kooij D. Diagnosis of Fouling Problems of NF and RO Membrane Installations by a Quick Scan. Desalination 2003;153;1—3:121—124.
61. Sweity A., Oren Y., Ronen Z., Herzberg M. The Influence of Antiscalants on Biofouling of RO Membranes in Seawater Desalination. Water Research. 2013;47(10): 3389—3398.
62. Vrouwenvelder J.S. e. a. Phosphate Limitation to Control Biofouling. Water Research. 2010;44(11):3454—3466.
63. Sohrabi M.R., Madaeni S.S., Khosravi M., Ghaedi A.M. Chemical Cleaning of Reverse Osmosis and Nanofiltration Membranes Fouled by Licorice Aqueous Solutions. Desalination. 2011;267(1):93—100.
64. Qin J.J., Oo M.H., Kekre K.A., Liberman B. Development of Novel Backwash Cleaning Technique for Reverse Osmosis in Reclamation of Secondary Effluent. J. Membr. Sci. 2010;346(1):8—14.
65. Li Y.-S., Shi L.-C., Gao X., Huang J.-G. Cleaning Effects of Oxalic Acid Under Ultrasound to the Used Reverse Osmos is Membranes with an Online Cleaning and Monitoring System. Desalination. 2016;390:62—71.
66. She Q., Wang R., Fane A.G., Tang C.Y. Membrane Fouling in Osmotically Driven Membrane Processes: a Review. J. Membr. Sci. 2016;499:201—233.
67. Joo S.H., Tansel B. Review Novel Technologies for Reverse Osmosis Concentrate Treatment. J. Environmental Management. 2015;150:322—335
68. Yurchevskiy E.B., Solodyannikov V.V. Stochnye Vody Membrannykh Obessolivayushchikh Ustanovok i Ikh Utilizatsiya. Ul'trafil'tratsiya. Energosberezhenie i Vodopodgotovka. 2017;2(106):3—13. (in Russian).
69. Pat. № 2551499 RF. Vodopodgotovitel'naya Ustanovka Teplovoy Elektrotsentrali. A.A. CHichirov i dr. Byul. izobret. 2015;15. (in Russian).
70. Vlasova A.Yu., Chichirova N.D., Chichirov A.A., Filimonova A.A., Vlasov S.M. Resursosberegayushchaya Tekhnologiya Neytralizatsii i Ochistki Kislykh i Zhestkikh Vysokomineralizirovannykh Zhidkikh Otkhodov Ionitnoy Vodopodgotovitel'noy Ustanovki TES. Voda i Ekologiya: Problemy i Resheniya. 2017;2(20):3—17.
---
For citation: Filimonova A.A., Arakelyan E.K., Chichirova N.D., Chichirov A.A., Saitov S.R., Buskin R.V. The Drawbacks of Baromembrane Water Treatment Technologies and Methods Used around the World for Eliminating Them. Bulletin of MPEI. 2020;4:98—112. (in Russian). DOI: 10.24160/1993-6982-2020-4-98-112.

Published

2019-11-10

Issue

Section

Thermal Power Stations, Their Power Systems and Units (05.14.14)