Experience in Development of an On-Board Electric System Power Supply Based on Advanced Electronic Components
DOI:
https://doi.org/10.24160/1993-6982-2020-4-113-121Keywords:
power supply, inverter, pulsed buck converter, pulse-width modulation, semiconductor lossesAbstract
The power supplies for an on-board electric system and auxiliary electric drives are considered taking the subway trains as an example. The development of semiconductor technology, in particular, devices made using silicon carbide (SiC), opens the possibility for designing a new generation of power supplies with improved technical and economic characteristics. The currently available SiC devices made both as modular units and as discrete chips are reviewed. In view of the high cost and limited range of modules, preference is given to discrete devices in the TO-247 package. Based on the results from estimating the losses in semiconductors and modeling their layout and thermal conditions, the optimal circuit solution for the stated problem has been determined. The effect the parameters of the power channel passive components have on the losses in semiconductor devices is evaluated. Based on the obtained evaluation results, the optimal inductances of the LC filters have been selected. The effect from introducing a time shift in the control of parallel-connected converters built according to the same scheme is analyzed. The effective values of the current through the output filter’s capacitors are quantified for the cases without the time shift in the control and with the shift by a quarter of the PWM cycle. The oscillograms of the power SiC transistor drain-source voltage transient obtained in testing the designed converter at the nominal load are presented. A description of the design of the converter’s container design is given along with a brief description of the layout solutions. An analysis of the mockup model test results and their comparison with the existing prototype have shown that the new power supply outperforms the prototype in having better efficiency and smaller weight and overall dimensions.
References
2. Яковенко М.С. и др. Активное подавление гармоник во входном токе силового преобразователя электропривода компрессора // Электричество. 2018. № 12. С. 41—46.
3. Коблов В. Вспомогательное оборудование вагонов моделей 81-740 и 81-760 // Мое метро. 2017. № 79. С. 9.
4. Остриров В.Н., Анучин А.С., Габидов А.А., Репецкий Д.В. Анализ особенностей эксплуатации частотно-регулируемого электропривода компрессора вагона метро // Промышленная энергетика. 2013. № 9. С. 14―18.
5. Данилов Е.Б. Вагоны метрополитена модели 81-765/766/767. М.: ИПЦ «Маска», 2018.
6. O'Neill M. Silicon Carbide MOSFETs Challenge IGBTs // Power Electronics Technology. 2008. V. 34(9). P. 14.
7. Ершов А. Полупроводниковые SiCприборы продолжают совершенствоваться // Электронные компоненты. 2018. № 11. C. 64—67.
8. Mysiński W., Jakubas W. Gate Driver for SiC MOS-FET Transistors // Techn. Trans. 2016. V. 1. Pp. 113—122.
9. Пат. № 181943 РФ. Устройство для подключения статического преобразователя к источнику напряжения постоянного тока / В.Н. Остриров, М.С. Яковенко, К.В. Мильский, А.А. Габидов, М.К. Котельников // Бюл. изобрет. 2018. № 22.
---
Для цитирования: Остриров В.Н., Яковенко М.С., Репецкий Д.В., Мильский К.В., Краснов В.В. Опыт разработки источника питания бортовой сети на перспективной элементной базе // Вестник МЭИ. 2020. № 4. С. 113—121. DOI: 10.24160/1993-6982-2020-4-113-121.
#
1. Sementovskiy E.A., Bogdanov A.A., Gusev V.S., Mogil'ner Yu.Ya. Ustroystvo i Remont Elektropoezdov Metropolitena. M.: Transport, 1991. (in Russian).
2. Yakovenko M.S. i dr. Aktivnoe Podavlenie Garmonik vo Vkhodnom Toke Silovogo Preobrazovatelya Elektroprivoda Kompressora. Elektrichestvo. 2018;12:41—46. (in Russian).
3. Koblov V. Vspomogatel'noe Oborudovanie Vagonov Modeley 81-740 i 81-760. Moe Metro. 2017;79:9. (in Russian).
4. Ostrirov V.N., Anuchin A.S., Gabidov A.A., Repetskiy D.V. Analiz Osobennostey Ekspluatatsii Chastotno-reguliruemogo Elektroprivoda Kompressora Vagona Metro. Promyshlennaya Energetika. 2013;9:14―18. (in Russian).
5. Danilov E.B. Vagony Metropolitena Modeli 81-765/766/767. M.: IPTS «Maska», 2018. (in Russian).
6. O'Neill M. Silicon Carbide MOSFETs Challenge IGBTs. Power Electronics Technology. 2008;34;9:14.
7. Ershov A. Poluprovodnikovye SiC Pribory Prodolzhayut Sovershenstvovat'sya. Elektronnye Komponenty. 2018;11:64—67. (in Russian).
8. Mysiński W., Jakubas W. Gate Driver for SiC MOSFET Transistors. Techn. Trans. 2016;1:113—122.
9. Pat. № 181943 RF. Ustroystvo dlya Podklyucheniya Staticheskogo Preobrazovatelya k Istochniku Napryazheniya Postoyannogo Toka. V.N. Ostrirov, M.S. Yakovenko, K.V. Mil'skiy, A.A. Gabidov, M.K. Kotel'nikov. Byul. izobret. 2018;22. (in Russian).
---
For citation: Ostrirov V.N., Yakovenko M.S., Repetsky D.V., Milskiy K.V., Krasnov V.V. Experience in Development of an On¬Board Electric System Power Supply Based on Advanced Electronic Components. Bulletin of MPEI. 2020;4:113—121. (in Russian). DOI: 10.24160/1993-6982-2020-4-113-121.

