The Case-Based Module for Identifying the Signals Used in Acoustic-Emission Monitoring of Complex Technical Objects

Authors

  • Павел [Pavel] Романович [R.] Варшавский [Varshavskiy]
  • Вера [Vera] Александровна [A.] Барат [Barat]
  • Антон [Anton] Вадимович [V.] Кожевников [Kozhevnikov]

DOI:

https://doi.org/10.24160/1993-6982-2020-4-122-128

Keywords:

case-based approach, monitoring, data analysis, acoustic emission

Abstract

The article addresses the topical issues of achieving more efficient operation of the module for identifying the signals obtained during acoustic-emission monitoring of complex technical objects that involves case-based reasoning. Monitoring systems process large amounts of information that require significant time resources for manually processing them by a human (an expert or operator). Therefore, for rendering help to experts (operators), it is proposed to use machine learning methods and data mining tools. Unfortunately, in these tasks it is not always possible to obtain the necessary data set (a training sample) for effectively using the machine learning tools.

In view of the above, it is proposed to apply the advanced approach known as case-based reasoning which is actively used in artificial intelligence systems, and which is able to operate with small volumes of the training sample and accumulate experience in solving such problems. However, this approach has a significant drawback: with an increase in the number of precedents, so does the number of comparison operations for processing a new situation (task). This can be solved by using the case similarity matrix. Instead of periodically reducing the base of accumulated cases, which is a time-consuming procedure, it is proposed to limit the number of accumulated use-cases and maintain the most significant (characteristic) ones.

In addition, a case presentation of the signal spectrum is proposed to reduce the time spent on one operation of comparing two use-cases. Not only does the proposed method of representing the signal spectrum reduce the amount of processed information, but it also simplifies the metric for comparing use-cases.

These modifications can significantly increase the efficiency (throughput) of the case-based module for identifying acoustic emission signals developed in the MS Visual Studio environment in the C# language. The results of testing the module on real acoustic emission monitoring data have confirmed the validity of applying the proposed modifications for the developed case-based module.

Author Biographies

Павел [Pavel] Романович [R.] Варшавский [Varshavskiy]

Ph.D. (Techn.), Assistant Professor of Applied Mathematics and Artificial Intelligence Dept., NRU MPEI, e-mail: VarshavskyPR@mpei.ru

Вера [Vera] Александровна [A.] Барат [Barat]

Ph.D. (Techn.), Assistant Professor of Diagnostic Information Technologies Dept., NRU MPEI, e-mail: BaratVA@mpei.ru

Антон [Anton] Вадимович [V.] Кожевников [Kozhevnikov]

Аssistant of Applied Mathematics and Artificial Intelligence Dept., NRU MPEI, e-mail: antoko@ yandex.ru

References

1. Варшавский П.Р., Алехин Р.В., Кожевников А.В. Разработка прецедентного модуля для идентификации сигналов при акустико-эмиссионном мониторинге сложных технических объектов // Программные продукты и системы. 2019. № 2. С. 207—213.
2. Барат В.А., Алякритский А.Л. Автоматизированный метод анализа данных акустико-эмиссионного контроля // Контроль. Диагностика. 2009. № 12. С. 12—19.
3. Терентьев Д.А. Идентификация сигналов акустической эмиссии при помощи частотно-временного анализа // В мире неразрушающего контроля. 2013. № 2. С. 51—55.
4. Алешин Н.П., Григорьев М.В., Щипаков Н.А. Современное оборудование и технологии неразрушающего контроля ПКМ // Инженерный вестник. 2015. № 1. С. 533—538.
5. Bardakov V.V., Barat V.A, Sagaidak A.I., Eliza-rov S.V. Acoustic Emission Behaviour of Over-reinforced Concrete Beams // Intern. J. Civil Eng. and Techn. 2018. V. 9(8). Pp. 1583—1594.
6. Малозёмов В.Н., Просеков О.В. О быстром преобразовании Фурье малых порядков // Вестник СПбГУ. Серия «Математика. Механика. Астрономия». 2003. № 1. С. 36—45.
7. Черненький В.М., Гапанюк Ю.Е. Методика идентификации пассажира по установочным данным // Инженерный журнал: наука и инновации. 2012. № 3(3). С. 30—39.
8. Mastriani M. Quantum-сlassical Algorithm for an Instantaneous Spectral Analysis of Signals: a Complement to Fourier Theory // J. Quantum Information Sci. 2018. V. 8. Pp. 52—77.
9. Alekhin, R., Varshavsky, P., Eremeev, A., Kozhevnikov A. Application of the Case-based Reasoning Approach for Identification of Acoustic-emission Control Signals of Complex Technical Objects // Proc. III Russian-Pacific Conf. Computer Techn. and Appl. 2018. Pp. 28—31.
10. Aamodt A., Plaza E. Case-based Reasoning: Foundational Issues, Methodological Variations, and System Approaches // Artificial Intelligence Communications. 1994. V. 7. No. 1. Pp. 39—59.
11. Рассел С., Норвиг П. Искусственный интеллект: современный подход. М.: Вильямс, 2007.
12. Водопьянов С.К. Интегрирование по Риману. Новосибирск: Изд-во Новосибирского гос. ун-та, 2012.
13. Richter M., Weber R. Case-based Reasoning: a Textbook. Heidelberg: Springer-Verlag, 2013.
14. Perner P. Introduction to Case-based Reasoning for Signals and Images. Heidelberg: Springer-Verlag, 2008.
15. Montani S, Jain L. Successful Case-based Reasoning Applications. Heidelberg: Springer-Verlag, 2010.
16. Варшавский П.Р., Ар Кар Мьо, Шункевич Д.В. Применение методов классификации и кластеризации для повышения эффективности работы прецедентных систем // Программные продукты и системы. 2017. № 4. С. 625—631.
17. Khan M.J., Hayat H. Awan I. Hybrid Сase-base Maintenance Approach for Modeling Large Scale Case-based Reasoning Systems // Hum. Cent. Comput. Inf. Sci. 2019. V. 9. Pp. 1—25.
18. Park Y.J. Improving Real-time Efficiency of Case-based Reasoning for Medical Diagnosis // Studies in Health Technology and Informatics. 2014. Pp. 52—55.
19. Wess S., Althoff K.D., Derwand G. Using kd Trees to Improve the Retrieval Step in Case-based Reasoning. Heidelberg: Springer, 1993. Pp. 167—181.
20. Negny S., Riesco H., Lann J. Effective Retrieval and New Indexing Method for Case Based Reasoning: Application in Сhemical Process Design // Engineering Appl. of Artificial Intelligence. 2010. V. 23(6). Pp. 880—894.
---
Для цитирования: Варшавский П.Р., Барат В.А., Кожевников А.В. Прецедентный модуль для идентификации сигналов при акустикоэмиссионном мониторинге сложных технических объектов // Вестник МЭИ. 2020. № 4. С. 122—128. DOI: 10.24160/1993-6982-2020-4-122-128.
---
Работа выполнена при поддержке: РФФИ (гранты № 18-01-00459, № 18-29-03088)
#
1. Varshavskiy P.R., Alekhin R.V., Kozhevnikov A.V. Razrabotka Pretsedentnogo Modulya dlya Identifikatsii Signalov pri Akustiko-emissionnom Monitoringe Slozhnykh Tekhnicheskikh Obektov. Programmnye Produkty i Sistemy. 2019;2:207—213. (in Russian).
2. Barat V.A., Alyakritskiy A.L. Avtomatizirovannyy Metod Analiza Dannykh Akustiko-emissionnogo Kontrolya. Kontrol'. Diagnostika. 2009;12:12—19. (in Russian).
3. Terent'ev D.A. Identifikatsiya Signalov Akusticheskoy Emissii pri Pomoshchi Chastotno-vremennogo Analiza. V Mire Nerazrushayushchego Kontrolya. 2013;2: 51—55. (in Russian).
4. Aleshin N.P., Grigor'ev M.V., Shchipakov N.A. Sovremennoe Oborudovanie i Tekhnologii Nerazrushayuhchego Kontrolya PKM. Inzhenernyy Vestnik. 2015;1: 533—538. (in Russian).
5. Bardakov V.V., Barat V.A, Sagaidak A.I., Elizarov S.V. Acoustic Emission Behaviour of Over-reinforced Concrete Beams. Intern. J. Civil Eng. and Techn. 2018;9(8): 1583—1594.
6. Malozemov V.N., Prosekov O.V. O Bystrom Preobrazovanii Fur'e Malykh Poryadkov. Vestnik SPbGU. Seriya «Matematika. Mekhanika. Astronomiya». 2003;1: 36—45. (in Russian).
7. Chernen'kiy V.M., Gapanyuk Yu.E. Metodika Identifikatsii Passazhira po Ustanovochnym Dannym. Inzhenernyy Zhurnal: Nauka i Innovatsii. 2012;3(3):30—39. (in Russian).
8. Mastriani M. Quantum-classical Algorithm for an Instantaneous Spectral Analysis of Signals: a Complement to Fourier Theory. J. Quantum Information Sci. 2018;8:52—77.
9. Alekhin, R., Varshavsky, P., Eremeev, A., Kozhevnikov A. Application of the Case-based Reasoning Approach for Identification of Acoustic-emission Control Signals of Complex Technical Objects. Proc. III Russian-Pacific Conf. Computer Techn. and Appl. 2018:28—31.
10. Aamodt A., Plaza E. Case-based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. Artificial Intelligence Communications. 1994;7;1: 39—59.
11. Rassel S., Norvig P. Iskusstvennyy Intellekt: Sovremennyy Podkhod. M.: Vil'yams, 2007. (in Russian).
12. Vodop'yanov S.K. Integrirovanie po Rimanu. Novosibirsk: Izd-vo Novosibirskogo gos. un-ta, 2012. (in Russian).
13. Richter M., Weber R. Case-based Reasoning: a Textbook. Heidelberg: Springer-Verlag, 2013.
14. Perner P. Introduction to Case-based Reasoning for Signals and Images. Heidelberg: Springer-Verlag, 2008.
15. Montani S, Jain L. Successful Case-based Reasoning Applications. Heidelberg: Springer-Verlag, 2010.
16. Varshavskiy P.R., Ar Kar M'o, Shunkevich D.V. Primenenie Metodov Klassifikatsii i Klasterizatsii dlya Povysheniya Effektivnosti Raboty Pretsedentnykh Sistem. Programmnye Produkty i Sistemy. 2017;4:625—631. (in Russian).
17. Khan M.J., Hayat H. Awan I. Hybrid Sase-base Maintenance Approach for Modeling Large Scale Case-based Reasoning Systems. Hum. Cent. Comput. Inf. Sci. 2019;9:1—25.
18. Park Y.J. Improving Real-time Efficiency of Case-based Reasoning for Medical Diagnosis. Studies in Health Technology and Informatics. 2014:52—55.
19. Wess S., Althoff K.D., Derwand G. Using kd Trees to Improve the Retrieval Step in Case-based Reasoning. Heidelberg: Springer, 1993:167—181.
20. Negny S., Riesco H., Lann J. Effective Retrieval and New Indexing Method for Case Based Reasoning: Application in Сhemical Process Design. Engineering Appl. of Artificial Intelligence. 2010;23(6):880—894.
---
For citation: Varshavskiy P.R., Barat V.A., Kozhevnikov A.V. The Case-Based Module for Identifying the Signals Used in Acoustic- Emission Monitoring of Complex Technical Objects. Bulletin of MPEI. 2020;4:122—128. (in Russian). DOI: 10.24160/1993-6982-2020-4-122-128.
---
The work is executed at support: RFBR (Grantst No. 18-01-00459, No. 18-29-03088)

Published

2019-11-21

Issue

Section

Theoretical Foundations of Computer Science (05.13.17)