Estimates of Polynomials from the Values of E-Functions
DOI:
https://doi.org/10.24160/1993-6982-2020-4-136-143Keywords:
Siegel’s method, algebraic independence measure, E-functionsAbstract
The Siegel-Shidlovskii method is one of the main methods in the theory of transcendental numbers. By using this method, it is possible to establish the transcendency and algebraic independence of the values of entire functions belonging to a certain class (so-called E-functions) provided that these functions are algebraically independent over C(z).
There are many examples of E-functions used in mathematics: exp(z), sinz, cosz, sinhz, coshz, Bessel functions, Kummer functions, "incomplete" gamma-function, generalized hypergeometric functions, and some other special functions.
By using the Siegel-Shidlovskii method, it is possible to obtain the lower estimates for the moduli of polynomials from the values of E-functions. These estimates are called algebraic independence measures of the numbers. They serve as the quantitative characteristics of algebraic independence. The problem of obtaining the estimates of algebraic independence measures has long been dealt with by many researchers. The first estimates of measures for the values of exp(z) were obtained by E. Borel and K. Mahler, and for the values of Bessel functions such estimates were obtained by C. Siegel. Estimates of algebraic independence measures for the values of general E-functions were established by S. Lang, A.I. Galochkin, A.B. Shidlovskii, and Yu.V. Nesterenko.
The constant appearing in the estimate of a measure is called effective if it can be expressed in terms of the parameters characterizing the considered functions and points at which their values are taken. An estimate of a measure is considered to be effective if it contains only effective constants. Generally speaking, the algebraic independence condition of functions is not sufficient for obtaining effective estimates of algebraic independence measures. Some additional conditions must be satisfied for this. The case in which the main totality of functions is algebraically dependent over C(z) is the most complicated one.
In a number of the author’s works, the estimates of algebraic independence measures of the values of E-functions were improved. After 1995, no papers have been published on this topic, although it still remains of issue.
References
2. Горелов В.А. Оценки мер алгебраической независимости значений Е-функций // Известия Вузов. Серия «Математика». 1992. № 10. С. 6—11.
3. Горелов В.А. Эффективные оценки многочленов от значений Е-функций, связанных алгебраическими уравнениями // Деп. в ВИНИТИ. 1995. № 46.
4. Шидловский А.Б. Трансцендентные числа. М: Наука, 1987.
5. Галочкин А.И. Оценка меры взаимной трансцендентности значений Е-функций // Математические заметки. 1968. Т. 3. Вып. 4. С. 377—386.
6. Lang S. A Transcendence Measure for E-functions // Mathematika. 1962. V. 9. P. 157—161.
7. Нестеренко Ю.В. Оценки порядков нулей функций одного класса и их приложение в теории трансцендентных чисел // Известия АН СССР. Серия «Математическая». 1977. Т. 41. № 2. С. 253—284.
8. Галочкин А.И. Оценки снизу многочленов от значений алгебраически зависимых Е-функций // Фундаментальная и прикладная математика. 1995. Т. 1. Вып. 1. С. 305—309.
9. Тыртышников Е.Е. Основы алгебры. М: Физматлит, 2017.
10. Dube T.W. The Structure of Polynomial Ideals and Grobner Bases // SIAM J. Comp. 1990. V. 19. No. 4. P. 750—773.
11. Горелов В.А. Алгебраическая независимость значений Е-функций, связанных произвольными алгебраическими уравнениями над (z) // Фундаментальная и прикладная математика. 1998. Т. 4. Вып. 2. С. 751—755.
12. Фельдман Н.И. Приближения алгебраических чисел. М: Изд-во МГУ, 1981.
13. Нгуен Тьен Тай. Об оценках порядков нулей многочленов от аналитических функций и приложении их к оценкам меры взаимной трансцендентности значений Е-функций // Математический сборник. 1983. Т. 120. № 1. С. 112—142.
---
Для цитирования: Горелов В.А. Оценки многочленов от значений Е-функций // Вестник МЭИ. 2020. № 4. С. 136—143. DOI: 10.24160/1993-6982-2020-4-136-143.
#
1. Gorelov V.A. Ob Otsenkakh Mer Algebraicheskoy Nezavisimosti Znacheniy E-funktsiy. Sibirskiy Matematicheskiy Zhurnal. 1990;31;5:31—45.(in Russian).
2. Gorelov V.A. Otsenki Mer Algebraicheskoy Nezavisimosti Znacheniy E-funktsiy. Izvestiya Vuzov. Seriya «Matematika». 1992;10:6—11.(in Russian).
3. Gorelov V.A. Effektivnye Otsenki Mnogochlenov ot znacheniy E-funktsiy, Svyazannykh Algebraicheskimi Uravneniyami. Dep. v VINITI. 1995;46.(in Russian).
4. Shidlovskiy A.B. Transtsendentnye Chisla. M: Nauka, 1987. (in Russian).
5. Galochkin A.I. Otsenka Mery Vzaimnoy Transtsendentnosti Znacheniy E-funktsiy. Matematicheskie Zametki. 1968;3;4:377—386. (in Russian).
6. Lang S. A Transcendence Measure for E-functions. Mathematika. 1962;9:157—161.
7. Nesterenko Yu.V. Otsenki Poryadkov Nuley Funktsiy Odnogo Klassa i Ikh Prilozhenie v Teorii Transtsendentnykh Chisel. Izvestiya AN SSSR. Seriya «Matematicheskaya». 1977;41;2:253—284. (in Russian).
8. Galochkin A.I. Otsenki Snizu Mnogochlenov ot Znacheniy Algebraicheski Zavisimykh E-funktsiy. Fundamental'naya i Prikladnaya Matematika. 1995;1;1: 305—309. (in Russian).
9. Tyrtyshnikov E.E. Osnovy Algebry. M: Fizmatlit, 2017. (in Russian).
10. Dube T.W. The Structure of Polynomial Ideals and Grobner Bases. SIAM J. Comp. 1990;9;4:750—773.
11. Gorelov V.A. Algebraicheskaya Nezavisimost' Znacheniy E-funktsiy, Svyazannykh Proizvol'nymi Algebraicheskimi Uravneniyami nad (z). Fundamentalnaya i Prikladnaya Matematika. 1998;4; 2:751—755. (in Russian).
12. Fel'dman N.I. Priblizheniya Algebraicheskikh Chisel. M: Izd-vo MGU, 1981. (in Russian).
13. Nguen T'en Tay. Ob Otsenkakh Poryadkov Nuley Mnogochlenov ot Analiticheskikh Funktsiy i Prilozhenii Ikh k Otsenkam Mery Vzaimnoy Transtsendentnosti Znacheniy E-funktsiy. Matematicheskiy Sbornik. 1983; 120;1:112—142. (in Russian).
---
For citotion: Gorelov V.A. Estimates of Polynomials from the Values of E-Functions. Bulletin of MPEI. 2020;4:136—143. (in Russian). DOI: 10.24160/1993-6982-2020-4-136-143.

