Synthesis of a Fuzzy Logic Model Rule Base through Supervised Learning

Authors

  • Виктор [Viktor] Николаевич [N.] Новиков [Novikov]

DOI:

https://doi.org/10.24160/1993-6982-2020-5-112-120

Keywords:

fuzzy logic model, fuzzy classifier, classification, rule base, supervised learning

Abstract

Intelligent information systems are at present actively incorporated in almost all industry fields. Out of many approaches to construction of such systems, the following two methods are worthy of noting: a method involving the use of expert knowledge, which include, in particular, fuzzy modeling), and a method of supervised machine learning, which estimate this knowledge from the available data marked depending on the objectresponse pairs. Each of these methods has its essential advantages and drawbacks. A combined use of both the approaches for solving the classification case is given.

The proposed method for training a fuzzy classifier includes fuzzification of the input features of objects, shaping of logical rule conditions for the fuzzy model rule base, and selection of the most typical rule conclusions for filling the relational matrix. The terms of input features and their membership functions behave as the fuzzy model hyperparameters. As an example, the case of binary classification in a two-dimensional coordinate space with a nonlinear distribution of classes is considered. The sets of terms and membership functions ensuring high-quality classification on the training and test data have been found for each of the coordinates. The fuzzy classifier trained using the proposed method is able to solve a number of binary and multi-class classification cases. It can be applied in a situation involving difficulties in specifying an a priori rule base, and supervised learning is allowed to be used as a solution. Since the approach has logical rules at its heart, transparency of the model is ensured, and explanations to the results yielded by the model can be done.

Author Biography

Виктор [Viktor] Николаевич [N.] Новиков [Novikov]

Engineer of Control and Intelligent Technologies Dept., NRU MPEI, e-mail: aximas17@yandex.ru

References

1.Пегат А. Нечеткое моделирование и управление. Серия «Адаптивные и интеллектуальные системы». М.: Бином. Лаборатория знаний, 2013.
2.Паттанаяк Сантану. Глубокое обучение и TensorFlow для профессионалов. Математический подход к построению систем искусственного интеллекта на Python. СПб.: Диалектика, 2019.
3.Ульянов С.В., Литвинцева Л.В., Добрынин В.Н., Мишин А.А. Интеллектуальное робастное управление: технологии мягких вычислений. М.: ВНИИГеосистем, 2011.
4.Воронцов К.В. Курс лекций «Теория обучения машин» [Электрон. ресурс] www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf (дата обращения 12.12.2019).
5.Ын А., Су К. Теоретический минимум по Big Data. Все, что нужно знать о больших данных. Серия: «Библиотека программиста». СПб.: Питер, 2019.
6.Профессиональный информационно-аналитический ресурс, посвященный машинному обучению, распознаванию образов и интеллектуальному анализу данных [Электрон. ресурс] www.machinelearning.ru/ (дата обращения 12.12.2019).
7.Метрики качества моделей машинного обучения. Сайт библиотеки Scikit-learn (Sklearn) [Офиц. сайт] www.scikit-learn.org/0.20/modules/classes.html#module-sklearn.metrics (дата обращения 12.12.2019).
8.Анисимов Д.Н. Нечеткие алгоритмы управления. М.: Изд-во МЭИ, 2004.
9.Макаров И.М., Лохин В.М., Манько С.В., Романов М.П. Искусственный интеллект и интеллектуальные системы управления. М.: Наука, 2006.
10.Ghosha S., Biswas S., Sarkar D., Sarkar P.P. A Novel Neuro-fuzzy Classification Technique for Data Mining // Egyptian Informatics J. 2014. V. 15. Iss. 3. Pp. 129—147.
11.Погодаев А.К., Сараев П.В. Идентификация нейро-нечетких моделей для данных больших объемов // Вестник Воронежского гос. техн. ун-та. 2015. Т. 11. № 4. С. 8—11.
12.Soroush Mohammadzadeh, Yeesock Kim, Jaehun Ahn. PCA-Based Neuro-fuzzy Model for system Identification of Smart Structures // Smart Structures and Syst. 2015. V. 15. No. 4. Pp. 1139—1158.
13.Gadoue Sh., Giaouris D., Finch J.W. Genetic Algorithm Optimized PI and Fuzzy Sliding Mode Speed Control for DTC Drives // Proc. World Congress on Eng. 2007. V. I. Pp. 475—480.
14.Velpula Nagi Reddy, A. Rama Swamy Reddy. A Fuzzy-neural-Genetic Algorithm Approach for Gene Expression and Micro Array Analysis for Breast Cancer Identification // AMSE J. 2017. V. 60. No. 3. Pp 551—565.
15.Анисимов Д.Н. Новиков В.Н., Сафина Э.А. Исследование влияния треугольных норм на динамику нечеткой системы автоматического управления // Вестник МЭИ. 2013. № 4. С. 186—192.
16.Описание функции генерации данных make_moons. Сайт библиотеки Scikit-learn (Sklearn) [Офиц. сайт] www.scikit-learn.org/0.21/modules/generated/sklearn.datasets.make_moons.html (дата обращения 12.12.2019).
17.Azeem M., Usman M. A Fuzzy Based Churn Prediction and Retention Model for Prepaid Customers in Telecom Industry // Intern. J. Computational Intelligence Syst. 2018. V. 11. Pp. 66—78.
18.Колосов О.С., Анисимов Д.Н., Хрипков Д.В. Формирование структуры и состава многоуровневых нечетких диагностических систем с использованием стохастической модели // Мехатроника, автоматизация, управление. 2016. Т. 17. № 6. С. 375—383.
---
Для цитирования: Новиков В.Н. Синтез базы правил нечеткой логической модели на основе задачи обучения с учителем // Вестник МЭИ. 2020. № 5. С. 112—120. DOI: 10.24160/1993-6982-2020-5-112-120.
#
1. Pegat A. Nechetkoe Modelirovanie i Upravlenie. Seriya «Adaptivnye i Intellektual'nye Sistemy». M.: Binom. Laboratoriya Znaniy, 2013. (in Russian).
2. Pattanayak Santanu. Glubokoe Obuchenie i TensorFlow dlya Professionalov. Matematicheskiy Podkhod k Postroeniyu Sistem Iskusstvennogo Intellekta na Python. SPb.: Dialektika, 2019. (in Russian).
3. Ul'yanov S.V., Litvintseva L.V., Dobrynin V.N., Mishin A.A. Intellektual'noe Robastnoe Upravlenie: Tekhnologii Myagkikh Vychisleniy. M.: VNIIGeosistem, 2011. (in Russian).
4. Vorontsov K.V. Kurs Lektsiy «Teoriya Obucheniya Mashin» [Elektron. Resurs] www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf (Data Obrashcheniya 12.12.2019). (in Russian).
5. Yn A., Su K. Teoreticheskiy Minimum po Big Data. Vse, Chto Nuzhno Znat' o Bol'shikh Dannykh. Seriya: «Biblioteka Programmista». SPb.: Piter, 2019. (in Russian).
6. Professional'nyy Informatsionno-analiticheskiy Resurs, Posvyashchennyy Mashinnomu Obucheniyu, Raspoznavaniyu Obrazov i Intellektual'nomu Analizu Dannykh [Elektron. Resurs] www.machinelearning.ru/ (Data Obrashcheniya 12.12.2019). (in Russian).
7. Metriki Kachestva Modeley Mashinnogo Obucheniya. Sayt Biblioteki Scikit-learn (Sklearn) [Ofits. Sayt] www.scikit-learn.org/0.20/modules/classes.html#module-sklearn.metrics (Data Obrashcheniya 12.12.2019). (in Russian).
8. Anisimov D.N. Nechetkie Algoritmy Upravleniya. M.: Izd-vo MEI, 2004. (in Russian).
9. Makarov I.M., Lokhin V.M., Man'ko S.V., Romanov M.P. Iskusstvennyy Intellekt i Intellektual'nye Sistemy Upravleniya. M.: Nauka, 2006. (in Russian).
10. Ghosha S., Biswas S., Sarkar D., Sarkar P.P. A Novel Neuro-fuzzy Classification Technique for Data Mining. Egyptian Informatics J. 2014;15;3:129—147.
11. Pogodaev A.K., Saraev P.V. Identifikatsiya Neyro-nechetkikh Modeley dlya Dannykh Bol'shikh Ob′emov. Vestnik Voronezhskogo Gos. Tekhn. Un-ta. 2015;11;4:8—11. (in Russian).
12. Soroush Mohammadzadeh, Yeesock Kim, Jaehun Ahn. PCA-Based Neuro-fuzzy Model for System Identification of Smart Structures. Smart Structures and Syst. 2015;15;4:1139—1158.
13. Gadoue Sh., Giaouris D., Finch J.W. Genetic Algorithm Optimized PI and Fuzzy Sliding Mode Speed Control for DTC Drives.Proc. World Congress on Eng. 2007;I:475—480.
14. Velpula Nagi Reddy, A. Rama Swamy Reddy. A Fuzzy-neural-Genetic Algorithm Approach for Gene Expression and Micro Array Analysis for Breast Cancer Identification. AMSE J. 2017;60;3:551—565.
15. Anisimov D.N. Novikov V.N., Safina E.A. Issledovanie Vliyaniya Treugol'nykh Norm na Dinamiku Nechetkoy Sistemy Avtomaticheskogo Upravleniya. Vestnik MEI. 2013;4:86—192. (in Russian).
16. Opisanie Funktsii Generatsii Dannykh make_moons. Sayt Biblioteki Scikit-learn (Sklearn) [Ofits. Sayt] www.scikit-learn.org/0.21/modules/generated/sklearn.datasets.make_moons.html (Data Obrashcheniya 12.12.2019).
17. Azeem M., Usman M. A Fuzzy Based Churn Prediction and Retention Model for Prepaid Customers in Telecom Industry. Intern. J. Computational Intelligence Syst. 2018;11:66—78.
18. Kolosov O.S., Anisimov D.N., Khripkov D.V. Formirovanie Struktury i Sostava Mnogourovnevykh Nechetkikh Diagnosticheskikh Sistem s Ispol'zovaniem Stokhasticheskoy Modeli. Mekhatronika, Avtomatizatsiya, Upravlenie. 2016;17;6:375—383.
---
For citation: Novikov V.N. Synthesis of a Fuzzy Logic Model Rule Base through Supervised Learning. Bulletin of MPEI. 2020;5: 112—120. (in Russian). DOI: 10.24160/1993-6982-2020-5-112-120.

Published

2019-12-13

Issue

Section

System Analysis, Management and Information Processing (05.13.01)