Modeling and Studying the Cooling of Waste Tire Solid Pyrolysis Products
DOI:
https://doi.org/10.24160/1993-6982-2020-6-18-28Keywords:
waste tires, pyrolysis, coke residue cooling, thermal conductivity, mathematical modeling, physical modelingAbstract
Every year, 1.5 billion tires are produced around the world, and each of them eventually falls into the waste stream. The growing volume of waste tires and limited possibilities for their disposal generate the need to develop methods for recycling them. A review of papers addressing the waste tire recycling problem with the use of proposed mechanical and thermochemical processing methods is presented. It is shown that researchers take interest in pyrolysis as a technology for thermochemical conversion of waste tire to produce valuable products: a solid fraction represented by coke residue (carbon black), a liquid hydrocarbon fraction (pyrolysis oil), and non-condensing gaseous fraction (pyrolysis gas). In a number of published papers, focus is placed on improving the consumer properties of each fraction. Conditions under which the coke residue quality can be improved to the level of activated carbon are, and methods for implementing this are developed.
The cooling of solid pyrolysis products can be a limiting factor for the pyrolysis plant operation. Unloading of the coke residue at increased temperatures with outdoor cooling can lead to its burning out. To develop an efficient coke residue cooling heat exchanger, it is necessary to know the physical properties of this substance.
A method for determining the thermal conductivity of fine coke residue based on the use of physical and mathematical modeling of the cooling process has been developed and implemented.
Experiments on studying the coke residue bed cooling process in air in the temperature range from 500 °C to the ambient temperature were carried out. The time dependences of temperature at several points of the bed layer are obtained.
A measuring chamber mathematical model reproducing the experimental conditions is developed. By studying the model, it is possible to determine the coke residue thermal conductivity, which approximates the calculated cooling process temperature curves to those obtained in the experiment with satisfactory accuracy.
Based on the analysis of experimental data, two temperature ranges are identified, and a linear dependence of the bed thermal conductivity on the temperature is found in each of them. The coefficients of these functions are determined by minimizing the response function using the Box--Wilson method. The obtained results are used for the development of industrial thermal power engineering facilities.
References
2 Thomas B., Ramesh C.G. A Comprehensive Re-view on the Applications of Waste Tire Rubber in Cement Concrete // Renewable and Sustainable Energy Rev. 2016 V. 54 Pp.1323—1333.
3 Ramirez-Canon А., Muñoz-Camelo Ya.F., Singh P.Decomposition of Used Tyre Rubber by Pyrolysis: Enhancement of the Physical Properties of the Liquid Fraction Usinga Hydrogen Stream // Environments. 2018 V. 5 Pp. 72—83.
4 Czajczynska D., Krzyzynska R., Jouhara H., Spencer N. Use of Pyrolytic Gas from Waste Tire as a Fuel: a Review // Energy. 2017 V. 134 Pp. 1121—1131.
5 Evans R., Evans A. The Composition of a Tyre: Typical Components. Banbury: The Waste and Resources Action Programme, 2006
6 Kalitko V.A. Steam-thermal Recycling of Tire Shreds: Calculation of the Rate of Explosion-Proof Feed of Steam // J. Engineering Phys. and Thermophys. 2008 V. 81 No. 4 Pp. 781—786.
7 Kalitko U. Waste Tire Pyrolysis: Heat-mass Balances & New Engineering Solutions with Steam // J. Solid Waste Techn. and Management. 2012 V. 6 Pp. 1—32.
8 Kalitko U. Triple-screw Reactor & Jet Venturi Condenser for Scrap Tire Pyrolysis Recycling with Steam. 2013 V. 4 Pp. 1—2.
9 Kalitko U. Waste Moving-stirring Bed in Thermal Processing of Auger or Kiln Pyrolysis Reactor: Math Model Engineering Solution for the Effective Cross- Section Charge of Reactors [Электрон. ресурс] www.re-searchgate.net/publication/275649560 (дата обращения 17.01.2020).
10 Castaldi M.J., Kwon E., Weiss B. Beneficial use of Waste Tires: an Integrated Gasification and Combustion Process Design via Thermogravimetric Analysis (TGA) of Styrene-Butadiene Rubber (SBR) and Polyisoprene (IR) // Environmental Eng. Sci. 2007 V. 24 No. 8 Pp. 1160—1178.
11 Naveed S., Malik A., Ramzan N., Akram M. A Comparative Study of Gasification of Food Waste (FW), Poultry Waste (PW), Municipal Solid Waste (MSW) and Used Tires (UT) // Nucleus. 2009 V. 46 Pp. 77—81.
12 Kiser J.V.L. Scrap-tire Pyrolysis: The Impossible Dream? // Scrap Magazine. 2002 V. 59 No. 5 Pp. 34—41.
13 Zabaniotou A.A., Stavropoulos G. Pyrolysis of Used Automobile Tires and Residual Char Utilization // J. Analytical & Appl. Pyrolysis. 2003 V. 70 (2). Pp. 711—722.
14 Day M., Shen Z., Cooney J.D. Pyrolysis of Auto Shredder Residue: Experiments with a Laboratory Screw Kiln Reactor // J. Analytical & Appl. Pyrolysis. 1999 V. 51 (1—2). Pp. 181—200.
15 Shen B., Wu C., Wang R., Guo B., Liang C. Pyrolysis of Scrap Tires with Zeolite USY // J. Hazardous Materials. 2006 V. 137 No. 2 Pp. 1065—1073.
16 Zhang X., Wang T., Chang J. Vacuum Pyrolysis of Waste Tires with Basic Additives // Waste Management. 2008 V. 28 No. 11 Pp. 2301—2310.
17 Aydın H., İlkılıç C. Optimization of Fuel Production from Waste Vehicle Tires by Pyrolysis and Resembling to Diesel Fuel by Various Desulfurization Methods // Fuel. 2012 V. 102 Pp. 605—612.
18 Shah J., Jan M.R., Mabood F. Catalytic Conversion of Waste Tyres into Valuable Hydrocarbons // J. Polymers and the Environment. 2007 V. 15 Pp. 207—211.
19 Murillo R. e. a. Activation of Pyrolytic Tire Char with CO : Kinetic Study // J. Analytical and Appl.2 Pyrolysis. 2004 V. 71 No. 2 Pp. 945—957.
20 Murillo R. e. a. The Application of Thermal Processes to Valorise Waste Tyre // Fuel Proc. Technol. 2006 V. 87 No. 2 Pp. 143—147.
21 Williams P.T., Brindle A.J. Fluidised Bed Pyrolysis and Catalytic Pyrolysis of Scrap Tyres // Environmental Technologies. 2003 V. 24 No. 7 Pp. 921—929.
22 Teng H., Lin Yu-Chuan, Hsu Li-Yeh. Production of Activated Carbon from Pyrolysis of Waste Tires Impregnated with Potassium Hydroxide // J. Air & Waste Management Association. 2000 V. 50 No. 11 Pp. 1940—1946.
23 Dinusha I. Activated Carbon from Waste Tires // Proc. Eng. Projects and Seminar. Kandy: University of Peradeniya, 2018
24 Mohan D., Pittman C.U., Steele P.H. Pyrolysis of Wood/Biomass for Bio-oil: a Critical Review // Energy Fuels. 2006 V. 20 No. 3 Pp. 848—889.
25 Paradela F., Pinto F., Ramos A.M., Gulyurtlu I., Cabrita I. Study of the slow Batch Pyrolysis of Mixtures of Plastics, Tyres and forestry Biomass Wastes // J. Analytical and Appl. Pyrolysis. 2009 V. 85 No. 1—2. Pp. 392—398.
26 Cao Q., Liu G., Bao W.R., Lu Y.K. Influence of Co-pyrolysis and Catalysis of Biomass with Waste Tyre on Pyrolytic Oil Properties // J. Chem. Industry and Eng. 2007 V. 58 No. 5 Pp. 1283—1289.
27 Cao Q., Jin L.E., Bao W.R., Lu Y.K. Investigations into the Characteristics of Oils Produced from Co-pyrolysis of Biomass and Tire // Fuel Proc. Technol. 2009 V. 90 No. 3 Pp. 337—342.
28 Navarro M.V. e. a. Application of a Particle Model to Pyrolysis. Comparison of Different Feedstock: Plastic, Tyre, Coal and Biomass // Fuel Proc. Technol. 2012 V. 103 Pp. 1—8.
29 Wen-Liang Wang, Jian-Min Chang, Li-Ping Cai, Sheldon Q.Shi. Quality Improvement of Pyrolysis Oil from Waste Rubber by Adding Sawdust // Waste Management. 2014 V. 34 No. 12 Pp. 2603—2610.
30 Луговой Ю.В. Кинетика пиролиза полимерного корда в присутствии хлоридов металлов подгруппы железа: дис. … канд. техн. наук. Иваново: Изд-во Тверского гос. техн. ун-та, 2010
31 Geng J. e. a. Fabrication of Activated Carbon Using Two-step Co-pyrolysis of Used Rubber and Larch Sawdust // Bioresources. 2017 V. 12 (4). Pp. 8641—8652.
32 Roy C., Chaala A., Darmstadt H. The Vacuum Pyrolysis of Used Tires. End-uses for Oil and Carbon Black Products // J. Analytical and Appl. Pyrolysis. 1999 V. 51 Pp. 201—221.
33 Barbooti M.M., Mohammed Th., Hussain A.A., Abas F. Optimization of Pyrolysis Conditions of Scrap Tires Under Inert Gas Atmosphere // J. Analytical and Appl. Pyrolysis. 2013 V. 4 Pp. 165—170.
34 Hita I., Arabiourrutia M., Olazar M., Bilbao J., Arandes J.M., Castano P. Opportunities and Barriers for Producing High Quality Fuels from the Pyrolysis of Scrap Tires // Renewable and Sustainable Energy Rev. 2016 V. 56 Pp. 745—759.
35 Бернадинер П.И., Ванюшкин В.Д., Попов С.К., Свистунов И.Н. Режимы охлаждения твердых продуктов пиролиза // Энергосбережение — теория и практика: Труды IX Междунар. школы-семинара молодых ученых и специалистов. М.: Издат. дом МЭИ, 2018 С. 390—394.
36 Ванюшкин В.Д., Попов С.К., Свистунов И.Н. Экспериментальное исследование процесса охлаждения продуктов пиролиза отходов шин // Инженерно-физический журнал. 2020 Т. 93 № 2 С. 398—402.
37 Кондратьев Г.М. Регулярный тепловой режим. М.: ГИТТЛ, 1954
38 Кондратьев Г.М. Тепловые измерения. М.—Л.: Машгиз, 1957
39 Костановский А.В. Регулярный тепловой режим и его приложение для измерения тепловых свойств твердых тел. Нестационарная теплопроводность. М.: Издат. дом МЭИ, 2006
40 Жумагулов М.Г. Разработка тепловых режимов энерготехнологической установки по производству углеродистого теплоносителя: дис. … канд. техн. наук. Омск, 2010
41 Крейт Ф., Блэк У. Основы теплопередачи. М.: Мир, 1983
42 Цветков Ф.Ф., Керимов Р.В., Величко В.И. Задачник по тепломассообмену. М.: Издат. дом МЭИ, 2010
43 Heat and Mass Transfer: Fundamentals & Applications. N.-Y.: McGraw-Hill Education, 2015
44 Патанкар С.В. Численные методы решения задач теплообмена и динамики жидкости. М.: Энергоатомиздат, 1984
45 Патанкар С.В. Численное решение задач теплопроводности и конвективного теплообмена при течении в каналах. М.: Изд-во МЭИ, 2003
46 Бек Дж., Дж. Бек, Блакуэлл Б., Сент-Клэр мл. Ч. Некорректные обратные задачи теплопроводности. М.: Мир, 1989
47 Крылова О.Б., Становой В.И., Буйлов А.А., Пуговкин А.У. К определению теплофизических свойств насыпной металлической садки // Математическое моделирование процессов в теплотехнических установках: Межвуз. сб. науч. трудов. Иваново: Изд-во ИвГУ, 1986 С. 76—80.
48 Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1976
---
Для цитирования: Попов С.К., Ванюшкин В.Д., Валинеева А.А. Моделирование и исследование процесса охлаждения твердых продуктов пиролиза отработанных шин // Вестник МЭИ. 2020. № 6. С. 18—00. DOI: 10.24160/1993-6982-2020-6-18-28.
#
1 Williams P.T. Pyrolysis of Waste Tyres: a Review. Waste Management. 2013;3;8:1714—1728.
2 Thomas B., Ramesh C.G. A Comprehensive Re-view on the Applications of Waste Tire Rubber in Cement Concrete. Renewable and Sustainable Energy Rev. 2016; 54:1323—1333.
3 Ramirez-Canon А., Muñoz-Camelo Ya.F., Singh P. Decomposition of Used Tyre Rubber by Pyrolysis: Enhancement of the Physical Properties of the Liquid Fraction Using a Hydrogen Stream. Environments. 2018;5:72—83.
4 Czajczynska D., Krzyzynska R., Jouhara H., Spencer N. Use of Pyrolytic Gas from Waste Tire as a Fuel: a Review. Energy. 2017;134: 1121—1131.
5 Evans R., Evans A. The Composition of a Tyre: Typical Components. Banbury: The Waste and Resources Action Programme, 2006
6 Kalitko V.A. Steam-thermal Recycling of Tire Shreds: Calculation of the Rate of Explosion-Proof Feed of Steam. J. Engineering Phys. and Thermophys. 2008;81;4: 781—786.
7 Kalitko U. Waste Tire Pyrolysis: Heat-mass Balances & New Engineering Solutions with Steam. J. Solid Waste Techn. and Management. 2012;6:1—32. 8 Kalitko U. Triple-screw Reactor & Jet Venturi Condenser for Scrap Tire Pyrolysis Recycling with Steam. 2013;4:1—2.
9 Kalitko U. Waste Moving-stirring Bed in Thermal Processing of Auger or Kiln Pyrolysis Reactor: Math Model Engineering Solution for the Effective Cross-Section Charge of Reactors [Electron. Resurs] www.resear-chgate.net/publication/275649560 (Data Obrashcheniya 17.01.2020).
10 Castaldi M.J., Kwon E., Weiss B. Beneficial use of Waste Tires: an Integrated Gasification and Combustion Process Design via Thermogravimetric Analysis (TGA) of Styrene-Butadiene Rubber (SBR) and Polyisoprene (IR). Environmental Eng. Sci. 2007;24:8:1160—1178.
11 Naveed S., Malik A., Ramzan N., Akram M. A Comparative Study of Gasification of Food Waste (FW), Poultry Waste (PW), Municipal Solid Waste (MSW) and Used Tires (UT). Nucleus. 2009;46:77—81.
12 Kiser J.V.L. Scrap-tire Pyrolysis: The Impossible Dream? Scrap Magazine. 2002;59:5:34—41.
13 Zabaniotou A.A., Stavropoulos G. Pyrolysis of Used Automobile Tires and Residual Char Utilization. J. Analytical & Appl. Pyrolysis. 2003;70 (2):711—722.
14 Day M., Shen Z., Cooney J.D. Pyrolysis of Auto Shredder Residue: Experiments with a Laboratory Screw Kiln Reactor. J. Analytical & Appl. Pyrolysis. 1999;51 (1—2):181—200.
15 Shen B., Wu C., Wang R., Guo B., Liang C. Pyrolysis of Scrap Tires with Zeolite USY. J. Hazardous Materials. 2006;137:2:1065—1073.
16 Zhang X., Wang T., Chang J. Vacuum Pyrolysis of Waste Tires with Basic Additives. Waste Management. 2008;28:11:2301—2310.
17 Aydın H., İlkılıç C. Optimization of Fuel Production from Waste Vehicle Tires by Pyrolysis and Resembling to Diesel Fuel by Various Desulfurization Methods. Fuel. 2012;102:605—612.
18 Shah J., Jan M.R., Mabood F. Catalytic Conversion of Waste Tyres into Valuable Hydrocarbons. J. Polymers and the Environment. 2007;15:207—211.
19 Murillo R. e. a. Activation of Pyrolytic Tire Char with CO : Kinetic Study. J. Analytical and Appl. Pyrolysis. 2004;71:2:945—957.
20 Murillo R. e. a. The Application of Thermal Processes to Valorise Waste Tyre. Fuel Proc. Technol. 2006;87:2:143—147.
21 Williams P.T., Brindle A.J. Fluidised Bed Pyrolysis and Catalytic Pyrolysis of Scrap Tyres. Environmental Technologies. 2003;24:7:921—929.
22 Teng H., Lin Yu-Chuan, Hsu Li-Yeh. Production of Activated Carbon from Pyrolysis of Waste Tires Impregnated with Potassium Hydroxide. J. Air & Waste Management Association. 2000;50:11:1940—1946.
23 Dinusha I. Activated Carbon from Waste Tires. Proc. Eng. Projects and Seminar. Kandy: University of Peradeniya, 2018
24 Mohan D., Pittman C.U., Steele P.H. Pyrolysis of Wood/Biomass for Bio-oil: a Critical Review. Energy Fuels. 2006;20:3:848—889.
25 Paradela F., Pinto F., Ramos A.M., Gulyurtlu I., Cabrita I. Study of the slow Batch Pyrolysis of Mixtures of Plastics, Tyres and forestry Biomass Wastes. J. Analytical and Appl. Pyrolysis. 2009;85:1—2:392—398.
26 Cao Q., Liu G., Bao W.R., Lu Y.K. Influence of Co-pyrolysis and Catalysis of Biomass with Waste Tyre on Pyrolytic Oil Properties. J. Chem. Industry and Eng. 2007;58:5:1283—1289.
27 Cao Q., Jin L.E., Bao W.R., Lu Y.K. Investigations into the Characteristics of Oils Produced from Co-pyrolysis of Biomass and Tire. Fuel Proc. Technol. 2009;90;3: 337—342.
28 Navarro M.V. e. a. Application of a Particle Model to Pyrolysis. Comparison of Different Feedstock: Plastic, Tyre, Coal and Biomass. Fuel Proc. Technol. 2012:103: 1—8.
29 Wen-Liang Wang, Jian-Min Chang, Li-Ping Cai, Sheldon Q.Shi. Quality Improvement of Pyrolysis Oil from Waste Rubber by Adding Sawdust. Waste Management. 2014;34:12:2603—2610.
30 Lugovoy Yu.V. Kinetika Piroliza Polimernogo Korda v Prisutstvii Khloridov Metallov Podgruppy Zheleza: Dis. … Kand. Tekhn. Nauk. Ivanovo: Izd-vo Tverskogo Gos. Tekhn. Un-ta, 2010 (in Russian).
31 Geng J. e. a. Fabrication of Activated Carbon Using Two-step Co-pyrolysis of Used Rubber and Larch Sawdust. Bioresources. 2017;12 (4):8641—8652.
32 Roy C., Chaala A., Darmstadt H. The Vacuum Pyrolysis of Used Tires. End-uses for Oil and Carbon Black Products. J. Analytical and Appl. Pyrolysis. 1999;51: 201—221.
33 Barbooti M.M., Mohammed Th., Hussain A.A., Abas F. Optimization of Pyrolysis Conditions of Scrap Tires Under Inert Gas Atmosphere. J. Analytical and Appl. Pyrolysis. 2013; 4:165—170.
34 Hita I., Arabiourrutia M., Olazar M., Bilbao J., Arandes J.M., Castano P. Opportunities and Barriers for Producing High Quality Fuels from the Pyrolysis of Scrap Tires. Renewable and Sustainable Energy Rev. 2016;56: 745—759.
35 Bernadiner P.I., Vanyushkin V.D., Popov S.K., Svistunov I.N. Rezhimy Okhlazhdeniya Tverdykh Produktov Piroliza. Energosberezhenie — Teoriya i Praktika: Trudy IX Mezhdunar. Shkoly-seminara Molodykh Uchenykh i Spetsialistov. M.: Izdat. Dom MEI, 2018:390—394. (in Russian).
36 Vanyushkin V.D., Popov S.K., Svistunov I.N. Eksperimental'noe Issledovanie Protsessa Okhlazhdeniya Produktov Piroliza Otkhodov Shin. Inzhenerno-Fizicheskiy Zhurnal. 2020;93;2:398—402. (in Russian).
37 Kondrat'ev G.M. Regulyarnyy Teplovoy Rezhim. M.: GITTL, 1954 (in Russian).
38 Kondrat'ev G.M. Teplovye Izmereniya. M.—L.: Mashgiz, 1957 (in Russian).
39 Kostanovskiy A.V. Regulyarnyy Teplovoy Rezhim i Ego Prilozhenie dlya Izmereniya Teplovykh Svoystv Tverdykh Tel. Nestatsionarnaya Teploprovodnost'. M.: Izdat. Dom MEI, 2006 (in Russian).
40 Zhumagulov M.G. Razrabotka TeplovykhRezhimov Energotekhnologicheskoy Ustanovki po Proizvodstvu Uglerodistogo Teplonositelya: Dis. … Kand. Tekhn. Nauk. Omsk, 2010 (in Russian).
41 Kreyt F., Blek U. Osnovy Teploperedachi. M.: Mir, 1983 (in Russian).
42 Tsvetkov F.F., Kerimov R.V., Velichko V.I. Zadachnik po Teplomassoobmenu. M.: Izdat. Dom MEI, 2010 (in Russian).
43 Heat and Mass Transfer: Fundamentals & Applications. N.-Y.: McGraw-Hill Education, 2015
44 Patankar S.V. Chislennye Metody Resheniya Zadach Teploobmena i Dinamiki Zhidkosti. M.: Energoatomizdat, 1984 (in Russian).
45 Patankar S.V. Chislennoe Reshenie Zadach Teploprovodnosti i Konvektivnogo Teploobmena pri Techenii v Kanalakh. M.: Izd-vo MEI, 2003 (in Russian).
46 Bek Dzh., Dzh. Bek, Blakuell B., Sent-Kler ml. Ch. Nekorrektnye Obratnye Zadachi Teploprovodnosti. M.: Mir, 1989 (in Russian).
47 Krylova O.B., Stanovoy V.I., Buylov A.A., Pugovkin A.U. K Opredeleniyu Teplofizicheskikh Svoystv Nasypnoy Metallicheskoy Sadki. Matematicheskoe Modelirovanie Protsessov v teplotekhnicheskikh Ustanovkakh: Mezhvuz. Sb. Nauch. Trudov. Ivanovo: Izd-vo IvGU, 1986:76—80. (in Russian).
48 Adler Yu.P., Markova E.V., Granovskiy Yu.V. Planirovanie Eksperimenta pri Poiske Optimal'nykh Usloviy. M.: Nauka, 1976 (in Russian).
---
For citation: Popov S.K., Vaniushkin V.D., Valineeva A.A. Modeling and Studying the Cooling of Waste Tire Solid Pyrolysis Products. Bulletin of MPEI. 2020;6:18—00. (in Russian). DOI: 10.24160/1993-6982-2020-6-18-28.

